def train(self, train_data): _. y_train, features = train_ data. iloc[:, :-1], train data. iloc[:,-1], train data.colums[:-1]
时间: 2024-01-18 11:02:10 浏览: 94
# Splitting the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(features, y_train, test_size=0.2, random_state=42)
# Training the model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluating the model on the validation set
y_pred = model.predict(X_val)
accuracy = accuracy_score(y_val, y_pred)
print("Accuracy:", accuracy)
相关问题
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
#创建一个dataset类。 import os import pandas as pd from torchvision.io import read_image from torch.utils.data import Dataset from torch.utils.data import DataLoader import chardet with open(r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', 'rb') as fp: result = chardet.detect(fp.read()) print(result) class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): #self.img_labels = pd.read_csv(annotations_file, sep=' ', header=None, encoding=result['encoding']) self.img_labels = pd.read_csv(annotations_file, sep=';', header=None, encoding=result['encoding']) self.img_labels[0] = self.img_labels[0].astype(str).str.cat(sep=' ') # 合并第一列为完整文件名 self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label train_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\data_batch_1',transform=None, target_transform=None) test_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\test_batch',transform=None, target_transform=None) train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")
这段代码创建了一个自定义的图像数据集类 CustomImageDataset,用于读取 CIFAR-10 数据集中的图像数据和标签。该类继承了 PyTorch 中的 Dataset 类,并实现了 __init__、__len__ 和 __getitem__ 方法。其中,__init__ 方法用于初始化数据集,__len__ 方法返回数据集中样本的数量,__getitem__ 方法返回给定索引的图像数据和标签。在代码中,使用 pandas 库读取 CIFAR-10 数据集中的标签文件,然后根据文件名和路径读取图像数据,并将其返回。
此外,代码还创建了两个数据集对象 train_dataset 和 test_dataset,分别用于训练和测试。最后,使用 PyTorch 中的 DataLoader 类加载数据集对象,生成用于训练模型的数据批次。代码还展示了如何读取数据批次中的图像数据和标签,并使用 matplotlib 库显示图像和标签。
阅读全文