CModbus2Main::CModbus2Main() { m_task.setProtocol(this); m_task.StartGmsMessageMap(); m_ykFlag = MODBUS_FLAG_YK_IDLE; m_ytFlag = MODBUS_FLAG_YT_IDLE; }
时间: 2024-03-29 10:35:05 浏览: 130
这是一个 C++ 构造函数,它定义了一个名为 CModbus2Main 的类。在构造函数中,首先通过 m_task.setProtocol(this) 将该类实例的指针传递给 m_task 对象,以便 m_task 对象能够调用该类实例的方法。然后调用 m_task.StartGmsMessageMap() 方法,开始监听 GMS 消息。接着将 m_ykFlag 设置为 MODBUS_FLAG_YK_IDLE,表示遥控标志位处于空闲状态。最后将 m_ytFlag 设置为 MODBUS_FLAG_YT_IDLE,表示遥调标志位处于空闲状态。
相关问题
Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-main/run.py", line 4, in <module> model = YOLO('/root/autodl-tmp/ultralytics-main/ultralytics/models/v8/yolov8.yaml').load('/root/autodl-tmp/ultralytics-main/yolov8x.pt') # build from YAML and transfer weights File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/model.py", line 105, in __init__ self._new(model, task) File "/root/autodl-tmp/ultralytics-main/ultralytics/yolo/engine/model.py", line 138, in _new self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 194, in __init__ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist File "/root/autodl-tmp/ultralytics-main/ultralytics/nn/tasks.py", line 496, in parse_model m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module KeyError: 'CBAM'
这个错误通常发生在使用YOLOv8时,因为YOLOv8中使用了CBAM模块,而您的环境中没有安装CBAM模块。
解决这个问题的方法是安装CBAM模块。您可以使用以下命令安装CBAM模块:
```
pip install cbam
```
或者,您可以在运行YOLOv8之前将CBAM模块的源代码下载到您的环境中,并将其添加到您的PYTHONPATH中。
```
git clone https://github.com/Jongchan/attention-module.git
export PYTHONPATH=$PYTHONPATH:/path/to/attention-module
```
如果您已经安装了CBAM模块,但仍然遇到此错误,请确保您的PYTHONPATH包含CBAM模块的路径。
WARNING Unable to automatically guess model task, assuming 'task=detect'. Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'. from n params module arguments Traceback (most recent call last): File "d:/Python/ultralytics-main/val.py", line 6, in <module> data = YOLO('D:/Python/ultralytics-main/traindata3/data.yaml') File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 105, in __init__ self._new(model, task) File "d:\Python\ultralytics-main\ultralytics\yolo\engine\model.py", line 138, in _new self.model = TASK_MAP[self.task][0](cfg_dict, verbose=verbose and RANK == -1) # build model File "d:\Python\ultralytics-main\ultralytics\nn\tasks.py", line 195, in __init__ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist File "d:\Python\ultralytics-main\ultralytics\nn\tasks.py", line 496, in parse_model for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args KeyError: 'backbone'
根据你提供的信息,看起来是一个YOLO模型的训练代码中出现了错误。错误信息中提到了缺少关键字'backbone',你需要检查一下你的代码中是否正确设置了模型的backbone部分。此外,你也可以确认一下你的数据集配置文件data.yaml是否正确。如果问题仍然存在,可以提供更多的代码信息以及完整的错误信息,这样我可以更好地帮助你解决问题。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)