# 删除指定列 df2_drop=df2.drop(['文物采样点'], axis=1) df3_drop=df3.drop(['文物编号', '表面风化'], axis=1) # 指定列数据求和 df2_sum = df2_drop.sum df3_sum = df3_drop.sum # 筛选保留85~105区间内的数据 df2_filtered = df2[(df2['column_name'] < 85) | (df2['column_name'] > 105)] df3_filtered = df3[(df3['column_name'] < 85) | (df3['column_name'] > 105)] # 输出不符合要求的物品名称 df2_filtered_names = df2_filtered['item_name'].tolist() df3_filtered_names = df3_filtered['item_name'].tolist() print('df2中不符合要求的物品名称:', df2_filtered_names) print('df3中不符合要求的物品名称:', df3_filtered_names),以上代码出现了问题,考考你看看怎么修正
时间: 2024-01-29 13:04:50 浏览: 68
在上面的代码中,`df2_sum = df2_drop.sum` 和 `df3_sum = df3_drop.sum` 这两行代码没有调用 sum() 方法,应该修改为 `df2_sum = df2_drop.sum()` 和 `df3_sum = df3_drop.sum()`。
另外,`df2['column_name']` 和 `df3['column_name']` 中的 `column_name` 应该替换为实际的列名。例如,如果想要筛选 'value' 列中的数据,应该使用 `df2['value']`。
最后,逻辑中筛选保留85~105区间内的数据的代码是错误的,应该使用 `df2_filtered = df2[(df2['value'] >= 85) & (df2['value'] <= 105)]` 和 `df3_filtered = df3[(df3['value'] >= 85) & (df3['value'] <= 105)]`。这样可以筛选出 'value' 列中值在 85~105 区间内的数据。
下面是修改后的代码:
```python
# 删除指定列
df2_drop = df2.drop(['文物采样点'], axis=1)
df3_drop = df3.drop(['文物编号', '表面风化'], axis=1)
# 指定列数据求和
df2_sum = df2_drop.sum()
df3_sum = df3_drop.sum()
# 筛选保留85~105区间内的数据
df2_filtered = df2[(df2['value'] >= 85) & (df2['value'] <= 105)]
df3_filtered = df3[(df3['value'] >= 85) & (df3['value'] <= 105)]
# 输出不符合要求的物品名称
df2_filtered_names = df2_filtered['item_name'].tolist()
df3_filtered_names = df3_filtered['item_name'].tolist()
print('df2中不符合要求的物品名称:', df2_filtered_names)
print('df3中不符合要求的物品名称:', df3_filtered_names)
```
阅读全文