写一个基于transformer的图像分类代码
时间: 2023-02-24 19:56:02 浏览: 269
写一个基于 Transformer 的图像分类代码需要一定的深度学习和 PyTorch 编程经验。但是,我可以提供一些基本的指导:
1. 导入所需的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
```
2. 定义超参数和数据加载:
```
# 超参数
num_epochs = 10
batch_size = 64
learning_rate = 0.001
# 加载 CIFAR10 数据集
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
```
3. 定义 Transformer 模型:
```
class TransformerModel(nn.Module):
def __init__(self):
super(TransformerModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 32 * 32, 10)
def forward(self, x):
x = self.conv1(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
return x
```
4. 定义损失函数和优化器:
```
model = TransformerModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
```
5. 训练模型:
```
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
outputs =
阅读全文