帮我写一个基于transformer的图像分类代码
时间: 2023-07-25 08:04:53 浏览: 104
Swin Transformer 实现图像分类
5星 · 资源好评率100%
好的,以下是一个基于Transformer的图像分类代码的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 128
epochs = 10
learning_rate = 0.001
# 加载数据集并进行预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_set = datasets.CIFAR10(root="./data", train=True, transform=transform, download=True)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
test_set = datasets.CIFAR10(root="./data", train=False, transform=transform, download=True)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False)
# 定义模型
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(TransformerClassifier, self).__init__()
self.transformer_encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=input_dim, nhead=8),
num_layers=6
)
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.transformer_encoder(x)
x = x.mean(dim=1)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.softmax(x)
return x
# 初始化模型、损失函数和优化器
model = TransformerClassifier(input_dim=224*224*3, hidden_dim=256, output_dim=10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.view(-1, 224*224*3)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}"
.format(epoch+1, epochs, i+1, len(train_loader), loss.item()))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.view(-1, 224*224*3)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy of the model on the test images: {:.2f}%".format(100 * correct / total))
```
在这个示例中,我们使用了PyTorch来构建一个基于Transformer的图像分类器。我们使用了CIFAR-10数据集,并对图像进行了预处理。我们定义了一个`TransformerClassifier`类,该类包含一个Transformer编码器和两个全连接层。我们使用交叉熵损失函数和Adam优化器进行训练,并在测试集上进行了评估。
请注意,由于Transformer的计算量较大,因此我们在这个示例中使用了较小的隐藏层维度和较少的Transformer层数。您可以根据需要对这些参数进行调整。
阅读全文