原生transformer代码 pytorch
时间: 2023-10-09 12:10:02 浏览: 261
Transformer时间序列预测(单步、多步实验)(Pytorch完整源码和数据)
5星 · 资源好评率100%
以下是一个简单的原生Transformer代码示例,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
super(Transformer, self).__init__()
self.d_model = d_model
self.embedding_src = nn.Embedding(src_vocab_size, d_model)
self.embedding_tgt = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout)
self.fc = nn.Linear(d_model, tgt_vocab_size)
self.softmax = nn.Softmax(dim=-1)
def forward(self, src, tgt):
src = self.embedding_src(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
tgt = self.embedding_tgt(tgt) * math.sqrt(self.d_model)
tgt = self.pos_encoder(tgt)
output = self.transformer(src, tgt)
output = self.fc(output)
output = self.softmax(output)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
这是一个基本的Transformer模型,包含一个由嵌入层和位置编码层组成的编码器和解码器,以及一个标准的Transformer层。在正向传递中,输入经过嵌入和位置编码处理后,被送入Transformer层进行处理,最后通过全连接层和Softmax层输出结果。在位置编码层中,我们使用了一个可学习的嵌入向量和一个固定的位置编码矩阵,以将位置信息融入到输入中。
阅读全文