1.创建一些随机数据,并将其转换为Tensor类型 随机数据代码: np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 2.定义一个逻辑回归模型(使用nn.Linear作为线性层,使用torch.sigmoid作为激活函数); 3.定义损失函数(使用二元交叉熵损失函数)和优化器(使用随机梯度下降法); 4.将模型训练指定轮数,每轮进行前向传播、反向传播和参数更新,并输出损失函数值; 5.输出模型参数并可视化结果。

时间: 2024-03-03 09:48:21 浏览: 22
好的,以下是代码实现: ```python import torch import numpy as np # 创建随机数据 np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 # 转换数据为Tensor类型 X = torch.tensor(X).float() Y = torch.tensor(Y).float() # 定义逻辑回归模型 class LogisticRegression(torch.nn.Module): def __init__(self, input_size): super(LogisticRegression, self).__init__() self.linear = torch.nn.Linear(input_size, 1) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.linear(x) x = self.sigmoid(x) return x # 实例化模型 model = LogisticRegression(2) # 定义损失函数和优化器 criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.1) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): # 前向传播 outputs = model(X) # 计算损失函数值 loss = criterion(outputs, Y) print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 反向传播和参数更新 optimizer.zero_grad() loss.backward() optimizer.step() # 输出模型参数 print('Model parameters:') for name, param in model.named_parameters(): if param.requires_grad: print(name, param.data) # 可视化结果 import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1], c=Y) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100), torch.linspace(y_min, y_max, 100)) Z = model(torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), dim=1)).detach().reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0.5]) plt.show() ``` 运行代码后,会输出每轮训练的损失函数值和最终的模型参数,最后会可视化结果。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg
recommend-type

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip
recommend-type

2024-2030中国定向转向膜市场现状研究分析与发展前景预测报告.docx

2024-2030中国定向转向膜市场现状研究分析与发展前景预测报告
recommend-type

开源工时填报管理系统安装包

开源工时填报管理系统安装包
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。