def forward_with_weights(self, v, q, w): v_ = self.v_net(v) q_ = self.q_net(q) logits = torch.einsum('bvk,bvq,bqk->bk', (v_, w, q_)) if 1 < self.k: logits = logits.unsqueeze(1) logits = self.p_net(logits).squeeze(1) * self.k return logits有什么作用
时间: 2023-05-19 11:06:01 浏览: 118
Add_Practice_全连接神经网络_
这段代码是一个神经网络的前向传播函数,用于计算输入的三个张量 v、q、w 经过神经网络后的输出 logits。具体来说,它首先将 v 和 q 分别通过两个全连接层 v_net 和 q_net 进行线性变换,然后将它们与 w 进行矩阵乘法,得到一个大小为 [batch_size, k] 的矩阵,其中 k 是一个超参数。如果 k 大于 1,那么还会通过一个全连接层 p_net 对这个矩阵进行处理,最后得到一个大小为 [batch_size] 的向量 logits。这个向量的每个元素都表示对应输入的一个样本的输出值。最后,这个向量会乘以 k,得到最终的输出。
阅读全文