def forward_with_weights(self, v, q, w): v_ = self.v_net(v) q_ = self.q_net(q) logits = torch.einsum('bvk,bvq,bqk->bk', (v_, w, q_)) if 1 < self.k: logits = logits.unsqueeze(1) logits = self.p_net(logits).squeeze(1) * self.k return logits有什么作用

时间: 2023-05-19 08:06:01 浏览: 71
这段代码是一个神经网络的前向传播函数,用于计算输入的三个张量 v、q、w 经过神经网络后的输出 logits。具体来说,它首先将 v 和 q 分别通过两个全连接层 v_net 和 q_net 进行线性变换,然后将它们与 w 进行矩阵乘法,得到一个大小为 [batch_size, k] 的矩阵,其中 k 是一个超参数。如果 k 大于 1,那么还会通过一个全连接层 p_net 对这个矩阵进行处理,最后得到一个大小为 [batch_size] 的向量 logits。这个向量的每个元素都表示对应输入的一个样本的输出值。最后,这个向量会乘以 k,得到最终的输出。
相关问题

class NeuralNetwork: def init(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 根据代码加上损失函数和优化

函数,可以将这个神经网络变为完整的模型。一种常见的损失函数是均方误差(Mean Squared Error),可以用于回归问题: ```python class NeuralNetwork: def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 self.bias1 -= learning_rate * grad_bias1 def mse_loss(self, y, y_hat): return np.mean((y - y_hat)**2) def sgd_optimizer(self, x, y, learning_rate): y_hat = self.forward(x) loss = self.mse_loss(y, y_hat) self.backward(x, y, learning_rate) return loss ``` 在这个模型中,我们添加了 `mse_loss` 函数,用于计算均方误差,同时添加了 `sgd_optimizer` 函数,用于执行随机梯度下降优化算法。在每次迭代中,我们计算预测值 `y_hat`,然后计算损失值并执行反向传播算法更新神经网络的权重和偏置。最后,我们返回损失值作为当前迭代的结果。根据需要,我们可以使用其他损失函数和优化器来训练这个神经网络。

请在这个DeepCFD的网络添加attention机制,并给出示例代码:import paddle import paddle.nn as nn class Attention(nn.Layer): def __init__(self, input_size, hidden_size): super(Attention, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.attn = nn.Linear(self.input_size + self.hidden_size, 1) self.softmax = nn.Softmax(axis=1) def forward(self, input, hidden): max_len = input.shape[0] attn_energies = paddle.zeros([max_len, 1]) for i in range(max_len): attn_energies[i] = self.score(input[i], hidden) attn_weights = self.softmax(attn_energies) context = paddle.sum(attn_weights * input, axis=0) return context.unsqueeze(0) def score(self, input, hidden): energy = self.attn(paddle.concat([input, hidden], axis=1)) return energy class DeepCFD(nn.Layer): def __init__(self, input_size, hidden_size, output_size): super(DeepCFD, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, batch_first=True) self.attention = Attention(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, (hidden, cell) = self.lstm(input) context = self.attention(output, hidden[-1]) output = self.fc(context) return output

好的,下面是添加了Attention机制的DeepCFD网络的示例代码: import paddle import paddle.nn as nn class Attention(nn.Layer): def __init__(self, input_size, hidden_size): super(Attention, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.attn = nn.Linear(self.input_size + self.hidden_size, 1) self.softmax = nn.Softmax(axis=1) def forward(self, input, hidden): max_len = input.shape[1] attn_energies = paddle.zeros([input.shape[0], max_len, 1]) for i in range(max_len): attn_energies[:, i] = self.score(input[:, i, :], hidden) attn_weights = self.softmax(attn_energies) context = paddle.sum(attn_weights * input, axis=1) return context def score(self, input, hidden): energy = self.attn(paddle.concat([input, hidden], axis=1)) return energy class DeepCFD(nn.Layer): def __init__(self, input_size, hidden_size, output_size): super(DeepCFD, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, batch_first=True) self.attention = Attention(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, input): output, (hidden, cell) = self.lstm(input) context = self.attention(output, hidden[-1]) output = self.fc(context) return output 在这个示例代码中,我们将Attention机制应用到了LSTM的输出上。在Attention中,我们计算了每个时间步的注意力能量,然后使用softmax函数计算注意力权重。然后,我们将这些权重与LSTM输出相乘并求和,得到上下文向量作为Attention机制的输出。 在DeepCFD中,我们使用了两层LSTM,然后将LSTM输出和最后一个时刻的隐藏状态作为Attention机制的输入。最后,我们将Attention机制的输出传递到一个全连接层中,得到最终的输出。

相关推荐

import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.weights1 = np.random.randn(self.input_size, self.hidden_size) self.bias1 = np.zeros((1, self.hidden_size)) self.weights2 = np.random.randn(self.hidden_size, self.output_size) self.bias2 = np.zeros((1, self.output_size)) def forward(self, X): self.hidden_layer = np.dot(X, self.weights1) + self.bias1 self.activated_hidden_layer = self.sigmoid(self.hidden_layer) self.output_layer = np.dot(self.activated_hidden_layer, self.weights2) + self.bias2 self.activated_output_layer = self.sigmoid(self.output_layer) return self.activated_output_layer def sigmoid(self, s): return 1 / (1 + np.exp(-s)) def sigmoid_derivative(self, s): return s * (1 - s) def backward(self, X, y, o, learning_rate): self.error = y - o self.delta_output = self.error * self.sigmoid_derivative(o) self.error_hidden = self.delta_output.dot(self.weights2.T) self.delta_hidden = self.error_hidden * self.sigmoid_derivative(self.activated_hidden_layer) self.weights1 += X.T.dot(self.delta_hidden) * learning_rate self.bias1 += np.sum(self.delta_hidden, axis=0, keepdims=True) * learning_rate self.weights2 += self.activated_hidden_layer.T.dot(self.delta_output) * learning_rate self.bias2 += np.sum(self.delta_output, axis=0, keepdims=True) * learning_rate def train(self, X, y, learning_rate, epochs): for epoch in range(epochs): output = self.forward(X) self.backward(X, y, output, learning_rate) def predict(self, X): return self.forward(X) X = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) y = np.array([[0], [1], [1], [0]]) nn = BPNeuralNetwork(3, 4, 1) nn.train(X, y, 0.1, 10000) new_data = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0]]) print(nn.predict(new_data))

import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.weights_ih = np.random.randn(hidden_size, input_size) self.bias_ih = np.random.randn(hidden_size, 1) self.weights_ho = np.random.randn(output_size, hidden_size) self.bias_ho = np.random.randn(output_size, 1) # 定义激活函数 self.activation = lambda x: 1 / (1 + np.exp(-x)) self.derivative = lambda x: x * (1 - x) def forward(self, inputs): # 计算隐藏层的输出 hidden = self.activation(np.dot(self.weights_ih, inputs) + self.bias_ih) # 计算输出层的输出 output = self.activation(np.dot(self.weights_ho, hidden) + self.bias_ho) return output def backward(self, inputs, targets, output): # 计算输出层的误差 output_error = targets - output output_delta = output_error * self.derivative(output) # 计算隐藏层的误差 hidden_error = np.dot(self.weights_ho.T, output_delta) hidden_delta = hidden_error * self.derivative(hidden) # 更新权重和偏置 self.weights_ho += np.dot(output_delta, hidden.T) self.bias_ho += output_delta self.weights_ih += np.dot(hidden_delta, inputs.T) self.bias_ih += hidden_delta def train(self, inputs, targets, epochs): for i in range(epochs): for j in range(len(inputs)): # 前向传播 output = self.forward(inputs[j].reshape(-1, 1)) # 反向传播 self.backward(inputs[j].reshape(-1, 1), targets[j].reshape(-1, 1), output)

最新推荐

recommend-type

node-v12.16.3-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

云计算基础课件—架构dr.pptx

云计算基础课件—架构dr.pptx
recommend-type

067ssm-jsp-mysql艺诚美业管理系统.zip(可运行源码+数据库文件+文档)

L文主要是对艺诚美业管理系统进行了介绍,包括研究的现状,还有涉及的开发背景,然后还对系统的设计目标进行了论述,还有系统的需求,以及整个的设计方案,对系统的设计以及实现,也都论述的比较细致,最后对艺诚美业管理系统进行了一些具体测试。 本文以JSP为开发技术,实现了一个艺诚美业管理系统。艺诚美业管理系统的主要使用者分为管理员;个人中心、会员管理、员工管理、员工打卡管理、技师预约管理、发型美容师管理、技师类型管理、套餐信息管理、套餐类型管理、套餐购买管理、会员充值管理、系统管理,员工;个人中心、员工打卡管理、技师预约管理,会员;个人中心、技师预约管理、套餐购买管理、会员充值管理,前台首页;首页、发型美容师、套餐信息、我的、跳转到后台等功能。通过这些功能模块的设计,基本上实现了整个艺诚美业管理系统的过程。 具体在系统设计上,采用了B/S的结构,同时,也使用JSP技术在动态页面上进行了设计,后台上采用Mysql数据库,是一个非常优秀的艺诚美业管理系统。 关键词 :艺诚美业管理系统;JSP技术;Mysql数据库;B/S结构
recommend-type

【微信小程序毕业设计】外卖点餐系统开发项目(源码+演示视频+说明).rar

【微信小程序毕业设计】外卖点餐系统开发项目(源码+演示视频+说明).rar 【项目技术】 微信小程序开发工具+java后端+mysql 【演示视频-编号:242】 https://pan.quark.cn/s/cb634e7c02b5 【实现功能】 有管理员,外卖员,餐厅,用户共四个角色。管理员功能有个人中心,外卖员管理,餐厅管理,用户管理,菜品分类管理,菜品信息管理,外卖订单管理,订单配送管理,订单评价管理,在线留言管理,系统管理等。外卖员,餐厅,用户都可以在微信小程序上面进行注册和登录操作。餐厅角色可以在微信小程序上面进行菜品的添加,修改,删除,查询操作,可以对用户的订单进行审核操作,查看订单配送状态和评价,可以查看投诉反馈和在线留言等。外卖员角色可以在微信小程序上面进行订单的抢单操作,查看订单配送和评价信息等。 用户角色可以在微信小程序上面进行菜品的查看和查询,对自己下的订单进行支付操作,查看订单配送和对订单评价,收藏菜品等操作。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,
recommend-type

解释一下下面每句话的含义@RequestMapping(value = "gcGl") public String gcGl(Gcgl gcGl, Model model) { List<Gcgl> list = gcglService.findList(gcGl); if (list!=null&&list.size()>0) { model.addAttribute("gcGl", list.get(0)); }else { model.addAttribute("gcGl", gcGl); } return "modules/tjxx/gc08glForm"; }

这段代码是一个Java方法,用于处理HTTP请求,具体含义如下: - @RequestMapping(value = "gcGl"):这是一个注解,表示该方法会处理名为"gcGl"的请求,即当用户访问该请求时,会调用该方法。 - public String gcGl(Gcgl gcGl, Model model):这是方法的声明,它有两个参数:一个是Gcgl类型的gcGl,另一个是Model类型的model。方法的返回值是一个字符串类型。 - List<Gcgl> list = gcglService.findList(gcGl):这行代码调用了一个名为findList的方法,该方法接受一个
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依