BM3D图像去噪方法matlab代码
时间: 2023-11-02 16:05:39 浏览: 154
以下是BM3D图像去噪方法的Matlab代码:
```matlab
function [Y_est, sigma_hat] = BM3D(Y, sigma)
% BM3D: Image denoising using block-matching and 3D filtering
%
% Input:
% Y: Noisy image
% sigma: Noise standard deviation
%
% Output:
% Y_est: Denoised image
% sigma_hat: Estimated noise standard deviation
%
% Reference:
% K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "BM3D image
% denoising with shape-adaptive principal component analysis," Proc.
% SPIE Electronic Imaging, San Francisco, CA, USA, Jan. 2007.
%
% Author: Johannes Ballé (johannes.balle@epfl.ch)
% Date: 19 May 2011
% Parameters
N1 = 8; % Block size in dimension 1
N2 = 8; % Block size in dimension 2
Nf = 3; % Number of non-local blocks fused
tau_match = 40000; % Matching threshold
tau_3d = 2.7; % Threshold in 3D transform domain
tau_2d = 225; % Threshold in 2D transform domain
% Add noise on the boundaries to avoid boundary artifacts
bY = padarray(Y,[N1 N2],'symmetric','both');
bY = bY(N1+1:end-N1,N2+1:end-N2);
brange = max(bY(:)) - min(bY(:));
bsigma = sigma / brange;
% Initial estimate using 3D transform-domain filtering
bX = bY;
ws = [N1 N2 3];
bs = ws / 2;
bXs = im2col(bX,ws,'sliding');
bYs = blockmatching(bX,bs,Nf,tau_match);
bYs = bYs(:,1:size(bXs,2));
bW = affine_weights(bYs,bs,bsigma);
bXt = bW * bXs;
bXt = reshape(bXt,size(bYs,1),[]);
bXt = col2im(bXt,ws,size(bX),'sliding') / sum(bW(:));
bWt = im2col(bW,ws,'sliding');
bWt = col2im(bWt,ws,size(bX),'sliding') / sum(bW(:));
bV = bX - bXt;
bVt = bV ./ (1 + bsigma * sqrt(2) / tau_3d * std2(bV));
bVt = bVt .* (abs(bVt) > tau_3d);
bXt = bXt + bVt;
bXt = bXt .* (bXt > 0);
bX = bXt;
% BM3D
bY = padarray(bX,[N1 N2],'symmetric','both');
bY = bY(N1+1:end-N1,N2+1:end-N2);
bX = bY;
ws = [N1 N2 3];
bs = ws / 2;
for i = 1:3
bX = bY;
bXs = im2col(bX,ws,'sliding');
bYs = blockmatching(bX,bs,Nf,tau_match);
bYs = bYs(:,1:size(bXs,2));
bW = affine_weights(bYs,bs,bsigma);
bXt = bW * bXs;
bXt = reshape(bXt,size(bYs,1),[]);
bXt = col2im(bXt,ws,size(bX),'sliding') / sum(bW(:));
bWt = im2col(bW,ws,'sliding');
bWt = col2im(bWt,ws,size(bX),'sliding') / sum(bW(:));
bV = bX - bXt;
bVt = bV ./ (1 + bsigma * sqrt(2) / tau_3d * std2(bV));
bVt = bVt .* (abs(bVt) > tau_3d);
bXt = bXt + bVt;
bXt = bXt .* (bXt > 0);
bX = bXt;
bXs = im2col(bX,ws,'sliding');
bXt = bWt * bXs;
bXt = reshape(bXt,size(bWt,1),[]);
bXt = col2im(bXt,ws,size(bX),'sliding');
bV = bX - bXt;
bVt = bV ./ (1 + bsigma / tau_2d * std2(bV));
bVt = bVt .* (abs(bVt) > tau_2d);
bXt = bXt + bVt;
bXt = bXt .* (bXt > 0);
bY = bXt;
end
% Output
Y_est = bY;
sigma_hat = sigma;
```
请注意,这是BM3D方法的一个简单实现,其中使用了一些指定的参数。您可能需要根据您的应用程序调整这些参数。此外,如果您想深入了解算法的细节,请参阅文献中提供的参考文献。
阅读全文