python画立体的心_在python3中绘制三维多边形
时间: 2024-03-08 21:46:45 浏览: 231
要在Python中绘制三维多边形,需要使用一些外部库来实现。其中比较常用的有Matplotlib和Mayavi。
下面是使用Matplotlib库绘制三维心形的代码:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, 2 * np.pi, 100)
x = 16 * np.sin(u) ** 3
y = 13 * np.cos(u) - 5 * np.cos(2 * u) - 2 * np.cos(3 * u) - np.cos(4 * u)
z = (np.sin(v) + 2) * (np.cos(v / 2) ** 5)
ax.plot(x, y, z, color='red')
plt.show()
```
代码中使用了numpy库生成了x、y、z三个坐标轴的坐标点,然后使用Matplotlib的3D绘图功能将其绘制出来。
这段代码的输出是一个绘制了三维心形的图像。
相关问题
python多边形画为三维图像
要将Python中的多边形画为三维图像,可以使用matplotlib库中的mplot3d子库。具体步骤如下:
1. 导入需要的库:
```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
```
2. 定义多边形的顶点坐标:
```python
vertices = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]])
```
3. 定义多边形的面:
```python
faces = np.array([[0, 1, 2], [0, 2, 3], [0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4]])
```
4. 创建3D图像对象并绘制多边形:
```python
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(vertices[:,0], vertices[:,1], vertices[:,2], triangles=faces)
plt.show()
```
这样就可以将多边形画为三维图像了。
用python写三维泰森多边形代码
泰森多边形是一种用于最近邻搜索的数据结构,它可以快速地找到某个点周围最近的点集。以下是用Python实现三维泰森多边形的代码:
```python
import numpy as np
from scipy.spatial import Delaunay
def compute_3d_convex_hull(points):
"""
Computes the 3D convex hull of given points.
"""
tri = Delaunay(points)
return tri.convex_hull
def compute_3d_tetrahedra(points):
"""
Computes the tetrahedra of the 3D convex hull of given points.
"""
tri = Delaunay(points)
return tri.simplices
def circumcenter(p1, p2, p3):
"""
Computes the circumcenter of a triangle defined by three points.
"""
m1 = np.array([p1,p2,p3])
m2 = np.vstack((np.ones(3), np.sum(m1**2,axis=1)))
v = np.linalg.solve(m2, np.array([1,1,1]))
return np.dot(m1.T,v[1:])
def in_circumsphere(p1, p2, p3, p4):
"""
Checks if a point p4 lies inside the circumsphere of a tetrahedron defined by three points.
"""
m1 = np.array([p1,p2,p3,p4])
m2 = np.hstack((np.ones((4,1)), m1))
m3 = np.array([np.sum(m1**2,axis=1)]).T
m4 = np.vstack((m2.T,m3.T))
return np.linalg.det(m4) > 0
def compute_3d_alpha_shapes(points, alpha):
"""
Computes the 3D alpha shape of given points.
"""
tetrahedra = compute_3d_tetrahedra(points)
edge_points = set()
tri_points = set()
for tetra in tetrahedra:
for i, j, k in [(0,1,2), (1,0,3), (2,1,3), (0,2,3)]:
triangle = (tetra[i], tetra[j], tetra[k])
circum = circumcenter(points[triangle[0]],
points[triangle[1]],
points[triangle[2]])
if all(np.linalg.norm(circum - points[pt]) <= alpha for pt in tetra if pt not in triangle):
tri_points |= set(triangle)
for edge in [(triangle[0],triangle[1]), (triangle[1],triangle[2]), (triangle[2],triangle[0])]:
if edge in edge_points:
edge_points.remove(edge)
else:
edge_points.add(edge)
return tri_points, edge_points
def compute_3d_tessellation(points, alpha):
"""
Computes the 3D alpha shape tessellation of given points.
"""
tri_points, edge_points = compute_3d_alpha_shapes(points, alpha)
vertices = sorted(set([v for e in edge_points for v in e]).union(tri_points))
vertex_map = dict(zip(vertices, range(len(vertices))))
triangles = [[vertex_map[v] for v in triangle] for triangle in tri_points]
edges = [[vertex_map[v1], vertex_map[v2]] for v1, v2 in edge_points]
return vertices, triangles, edges
```
以下是一个示例,演示如何使用3D alpha形来绘制一个球体上的点云:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
def plot_3d_tessellation(vertices, triangles, edges):
"""
Plots the 3D alpha shape tessellation.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_box_aspect([1,1,1])
for triangle in triangles:
poly = Poly3DCollection([vertices[triangle]], alpha=0.1, facecolor='b')
ax.add_collection3d(poly)
for edge in edges:
ax.plot(vertices[edge,0], vertices[edge,1], vertices[edge,2], 'k-', alpha=0.2)
ax.scatter(vertices[:,0], vertices[:,1], vertices[:,2], c='r', alpha=0.5, s=10)
plt.show()
# Generate random points on a sphere
theta = np.random.uniform(0, 2*np.pi, 1000)
phi = np.random.uniform(0, np.pi, 1000)
x = np.sin(phi) * np.cos(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(phi)
points = np.vstack((x,y,z)).T
# Compute the 3D alpha shape tessellation
vertices, triangles, edges = compute_3d_tessellation(points, 0.25)
# Plot the tessellation
plot_3d_tessellation(vertices, triangles, edges)
```
这将生成一个球体上的点云,并绘制其3D alpha形。可以通过调整alpha值来改变形状。
阅读全文