场景:上位机和下位机通信依靠总线互通编写代码模拟实现: 1) 一个线程模拟发送AT命令 在内存中定义一个全局数组,定义一个信号量Semap AT Cmd,保护全局数组AT Cmd,每5秒发送AT命令,每次交替读传感器数据1和传感器数据2,命令写入该数组。 2) 一个线程模拟传感器节点生成总线返回的数据 获取Semap AT Cmd后,读取全局数组AT Cmd; 调用r = rand0%255;(#include <stdlib.h>) 生成一个随机延迟; 根据命令将模拟传感器数据帧写入全局数组AT Data通过信号量Semap AT Data与其他线程同步 AT Data的读写. 3)一个线程模拟接收总线数据 获取到信号量Semap AT Data后,读取AT Data; 在未超时收到数据时,该线程通过事件集Event与数据处理线程同步 4) 两个线程处理传感器数据 通过事件集Event同步,分别处理传感器1/2数据 基于RT-Thread实现上述要求,要求条理清晰
时间: 2024-03-21 21:44:02 浏览: 50
以下是基于RT-Thread实现上述要求的代码。由于没有具体的传感器数据和总线协议,本代码仅提供了一个基于信号量、事件集和全局数组的通信框架,需要根据实际情况进行修改和调试。
```c
#include <rtthread.h>
#include <stdlib.h>
#define AT_CMD_LEN 128
#define AT_DATA_LEN 256
char at_cmd[AT_CMD_LEN]; // AT命令全局数组
char at_data[AT_DATA_LEN]; // 传感器数据全局数组
rt_sem_t semap_at_cmd; // 信号量,保护AT命令全局数组
rt_sem_t semap_at_data; // 信号量,保护传感器数据全局数组
rt_event_t event_data_ready; // 事件集,用于传感器数据处理线程同步
static void send_at_cmd_thread_entry(void* parameter)
{
int i = 0;
while (1) {
rt_sem_take(&semap_at_cmd, RT_WAITING_FOREVER); // 获取信号量,保护全局数组
if (i % 2 == 0) {
// 交替读取传感器数据1
snprintf(at_cmd, AT_CMD_LEN, "AT+GETDATA1\r\n");
} else {
// 交替读取传感器数据2
snprintf(at_cmd, AT_CMD_LEN, "AT+GETDATA2\r\n");
}
rt_sem_release(&semap_at_cmd); // 释放信号量,保护全局数组
i++;
// 模拟发送AT命令
rt_kprintf("Sending AT command: %s", at_cmd);
// TODO: 在总线上发送AT命令
rt_thread_mdelay(5000);
}
}
static void gen_sensor_data_thread_entry(void* parameter)
{
while (1) {
rt_sem_take(&semap_at_cmd, RT_WAITING_FOREVER); // 获取信号量,保护全局数组
char cmd[AT_CMD_LEN];
strncpy(cmd, at_cmd, AT_CMD_LEN); // 复制AT命令,避免在读取时被修改
rt_sem_release(&semap_at_cmd); // 释放信号量,保护全局数组
// 模拟生成传感器数据
int r = rand() % 255;
rt_thread_mdelay(r); // 模拟随机延迟
snprintf(at_data, AT_DATA_LEN, "Sensor data for command %s: %d", cmd, r);
rt_sem_release(&semap_at_data); // 释放信号量,通知数据处理线程
}
}
static void recv_bus_data_thread_entry(void* parameter)
{
int timeout = 5000; // 超时时间为5秒
while (1) {
rt_sem_take(&semap_at_data, RT_WAITING_FOREVER); // 获取信号量,保护全局数组
// TODO: 从总线上读取数据,写入全局数组AT Data
rt_sem_release(&semap_at_data); // 释放信号量,保护全局数组
// 等待数据处理线程处理数据,超时则重新等待
rt_uint32_t recv_flag;
rt_err_t result = rt_event_recv(&event_data_ready, 1, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, timeout, &recv_flag);
if (result == RT_EOK) {
// 处理数据
if (recv_flag & 0x01) {
// TODO: 处理传感器数据1
}
if (recv_flag & 0x02) {
// TODO: 处理传感器数据2
}
} else if (result == -RT_ETIMEOUT) {
rt_kprintf("Timeout while waiting for data processing thread\n");
} else {
rt_kprintf("Error while waiting for data processing thread\n");
}
}
}
static void process_sensor_data_thread_entry(void* parameter)
{
while (1) {
rt_uint32_t recv_flag;
rt_event_recv(&event_data_ready, 0x03, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recv_flag);
if (recv_flag & 0x01) {
// TODO: 处理传感器数据1
rt_kprintf("Processing sensor data 1: %s\n", at_data);
}
if (recv_flag & 0x02) {
// TODO: 处理传感器数据2
rt_kprintf("Processing sensor data 2: %s\n", at_data);
}
}
}
int sensor_data_communication_init(void)
{
rt_sem_init(&semap_at_cmd, "Semap AT Cmd", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&semap_at_data, "Semap AT Data", 0, RT_IPC_FLAG_FIFO);
rt_event_init(&event_data_ready, "Event Data Ready", RT_IPC_FLAG_FIFO);
rt_thread_t send_at_cmd_thread = rt_thread_create("Send AT Cmd", send_at_cmd_thread_entry, RT_NULL, 1024, 8, 10);
rt_thread_t gen_sensor_data_thread = rt_thread_create("Gen Sensor Data", gen_sensor_data_thread_entry, RT_NULL, 1024, 8, 10);
rt_thread_t recv_bus_data_thread = rt_thread_create("Recv Bus Data", recv_bus_data_thread_entry, RT_NULL, 1024, 8, 10);
rt_thread_t process_sensor_data_thread = rt_thread_create("Process Sensor Data", process_sensor_data_thread_entry, RT_NULL, 1024, 8, 10);
if (send_at_cmd_thread != RT_NULL) {
rt_thread_startup(send_at_cmd_thread);
}
if (gen_sensor_data_thread != RT_NULL) {
rt_thread_startup(gen_sensor_data_thread);
}
if (recv_bus_data_thread != RT_NULL) {
rt_thread_startup(recv_bus_data_thread);
}
if (process_sensor_data_thread != RT_NULL) {
rt_thread_startup(process_sensor_data_thread);
}
return RT_EOK;
}
```
阅读全文