如何使用np.concatenate将多张图片重叠
时间: 2023-06-05 20:04:49 浏览: 151
抱歉,我可以回答这个问题。你可以使用np.concatenate将多张图片重叠。具体方法是将多张图片数组按照重叠的方向进行合并,如水平方向合并可以使用np.concatenate((img1, img2, img3), axis=1),其中img1、img2、img3为要合并的三张图片数组。如果是垂直方向合并,可以使用np.concatenate((img1, img2, img3), axis=0)。
相关问题
解释下这段代码: while len(idxs) > 0: last = len(idxs) - 1 i = idxs[last] pick.append(i) # keep top k if keep_top_k != -1: if len(pick) >= keep_top_k: break overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]]) overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]]) overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]]) overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]]) overlap_w = np.maximum(0, overlap_xmax - overlap_xmin) overlap_h = np.maximum(0, overlap_ymax - overlap_ymin) overlap_area = overlap_w * overlap_h overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area) need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > iou_thresh)[0])) idxs = np.delete(idxs, need_to_be_deleted_idx) # if the number of final bboxes is less than keep_top_k, we need to pad it. # TODO return conf_keep_idx[pick]
这是一个非极大值抑制(Non-Maximum Suppression,简称NMS)的代码实现,用于去除重叠的边界框。输入为一组边界框(bounding boxes)及其对应的置信度(confidence scores),输出为经过NMS后剩余的边界框的索引。
具体实现过程如下:
1. 首先将所有边界框按照置信度从高到低排序。
2. 取出置信度最高的边界框,并将其加入最终输出列表中。
3. 计算当前边界框与剩余边界框的重叠部分,如果重叠部分的面积占总面积的比例大于一定阈值(iou_thresh),则将该边界框删除。
4. 重复第2步和第3步,直到所有的边界框都被处理完毕。
5. 如果最终输出的边界框数量少于指定的保留数量(keep_top_k),则需要进行填充,这里还未实现。
最终返回的是经过NMS后剩余的边界框的索引。
你能不能用Python帮我写一个计算多个矩形重叠形成的多边形边长的程序
可以的,以下是一个计算多个矩形重叠形成的多边形边长的Python程序:
```python
import numpy as np
# 输入矩形的坐标和数量
n = int(input("请输入矩形的数量:"))
rects = []
for i in range(n):
x1, y1, x2, y2 = map(int, input(f"请输入第{i+1}个矩形的坐标:").split())
rects.append([(x1, y1), (x2, y1), (x2, y2), (x1, y2)])
# 计算矩形重叠部分的多边形
polygons = []
for i in range(n):
polygon = rects[i]
for j in range(i+1, n):
rect = rects[j]
intersection = []
for k in range(4):
xk, yk = polygon[k]
xk1, yk1 = polygon[(k+1)%4]
for l in range(4):
xl, yl = rect[l]
xl1, yl1 = rect[(l+1)%4]
if (xk-xk1)*(yl-yl1) == (yk-yk1)*(xl-xl1):
if min(xk, xk1) <= xl <= max(xk, xk1) and min(yl, yl1) <= yk <= max(yl, yl1):
intersection.append((xl, yk))
elif min(xk, xk1) <= xl1 <= max(xk, xk1) and min(yl, yl1) <= yk <= max(yl, yl1):
intersection.append((xl1, yk))
elif min(xk, xk1) <= xk <= max(xk, xk1) and min(yl, yl1) <= yl <= max(yl, yl1):
intersection.append((xk, yl))
elif min(xk, xk1) <= xk1 <= max(xk, xk1) and min(yl, yl1) <= yl <= max(yl, yl1):
intersection.append((xk1, yl))
if intersection:
intersection = np.array(intersection)
hull = np.concatenate([polygon, rect, intersection])
hull = np.unique(hull, axis=0)
hull = [tuple(point) for point in hull]
polygons.append(hull)
polygons.append(polygon)
# 计算多边形的边长
perimeters = []
for polygon in polygons:
perimeter = 0
for i in range(len(polygon)):
x1, y1 = polygon[i]
x2, y2 = polygon[(i+1)%len(polygon)]
perimeter += ((x2-x1)**2 + (y2-y1)**2)**0.5
perimeters.append(perimeter)
# 输出结果
for i in range(len(polygons)):
print(f"第{i+1}个多边形的边长为:{perimeters[i]}")
```
该程序首先输入矩形的坐标和数量,然后计算矩形重叠部分的多边形,并计算多边形的边长,最后输出每个多边形的边长。程序中使用了NumPy库来处理向量和矩阵运算。
阅读全文