人工蜂群算法解决tsp问题MATLAB代码
时间: 2023-08-06 19:13:53 浏览: 117
以下是一个简单的人工蜂群算法解决TSP问题的MATLAB代码:
```matlab
% TSP问题的距离矩阵
dist = [...];
% 初始化参数
max_iter = 100; % 迭代次数
n_bees = 20; % 蜜蜂个数
n_sites = n_bees; % 蜜蜂的任务数(采食点数)
n_elite = 5; % 精英蜜蜂的数量
n_scouts = 5; % 侦查蜂的数量
limit = 10; % 收获限制
best_solution = Inf;
best_solution_iter = 0;
% 初始化蜜蜂群体
sites = randperm(size(dist,1),n_sites); % 采食点的编号
solutions = zeros(n_bees,n_sites); % 蜜蜂的解
for i=1:n_bees
solutions(i,:) = sites(randperm(n_sites));
end
% 开始迭代
for iter=1:max_iter
% 计算每个蜜蜂的解的适应度
fitness = zeros(n_bees,1);
for i=1:n_bees
path = [solutions(i,:), solutions(i,1)];
distance = 0;
for j=1:n_sites
distance = distance + dist(path(j),path(j+1));
end
fitness(i) = 1/distance;
if distance < best_solution
best_solution = distance;
best_solution_iter = iter;
end
end
% 精英蜜蜂阶段
[~,elite_indices] = sort(fitness,'descend');
elite_solutions = solutions(elite_indices(1:n_elite),:);
% 跳舞蜂阶段
for i=1:n_bees
% 选择一个领舞蜂
dance_bee = randi(n_elite);
% 选择一个要更新的采食点
site = randi(n_sites);
% 生成新的解
new_solution = elite_solutions(dance_bee,:);
% 通过交换两个采食点更新解
neighbor = mod(site,[n_sites,1])+1;
new_solution([site,neighbor]) = new_solution([neighbor,site]);
% 更新蜜蜂的解
solutions(i,:) = new_solution;
end
% 侦查蜂阶段
scouts = randperm(n_scouts);
for i=1:n_scouts
% 随机选择一个采食点
site = randi(n_sites);
% 随机重新分配这个采食点到另一个蜜蜂
bee = randi(n_bees);
new_solution = solutions(bee,:);
new_site = randi(n_sites);
new_solution([site,new_site]) = new_solution([new_site,site]);
% 更新蜜蜂的解
solutions(bee,:) = new_solution;
end
% 收获限制
if iter - best_solution_iter > limit
% 重新初始化蜜蜂群体
sites = randperm(size(dist,1),n_sites);
solutions = zeros(n_bees,n_sites);
for i=1:n_bees
solutions(i,:) = sites(randperm(n_sites));
end
end
% 输出当前最优解
disp(['Iteration ',num2str(iter),': Best solution = ',num2str(best_solution)]);
end
```
该代码使用随机生成的初始解,然后对每个蜜蜂的解进行评估,并根据适应度值选择精英蜜蜂。在跳舞蜂阶段,每个蜜蜂选择一个领舞蜂,并随机选择一个采食点来更新其解。在侦查蜂阶段,随机选择一个采食点,并将其重新分配给另一个蜜蜂。如果最优解在一段时间内没有得到改善,将重新初始化蜜蜂群体以避免陷入局部最优解。
阅读全文