BERT实体关系联合抽取Python代码
时间: 2023-11-05 16:08:53 浏览: 145
课程大作业基于bert4keras开放领域的关系抽取python源码+部署说明.zip
5星 · 资源好评率100%
下面是一个简单的BERT实体关系联合抽取的Python代码示例:
```python
import torch
import transformers
import numpy as np
# 加载预训练的BERT模型和分词器
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
model = transformers.BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# 定义实体关系类别
labels = ['NO_RELATIONSHIP', 'RELATIONSHIP']
# 定义样本句子和实体位置
text = "The company Apple was founded by Steve Jobs and Steve Wozniak."
entity1 = (4, 9, 'Apple')
entity2 = (32, 42, 'Steve Jobs')
# 对样本进行分词和编码
encoded_dict = tokenizer.encode_plus(
text,
text_pair=None,
add_special_tokens=True,
truncation_strategy='longest_first',
max_length=128,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
# 获取实体位置的相对编码位置
entity1_start = np.where(encoded_dict['input_ids'] == tokenizer.encode(entity1[2], add_special_tokens=False)[0])[0][0]
entity1_end = entity1_start + len(tokenizer.encode(entity1[2], add_special_tokens=False)) - 1
entity2_start = np.where(encoded_dict['input_ids'] == tokenizer.encode(entity2[2], add_special_tokens=False)[0])[0][0]
entity2_end = entity2_start + len(tokenizer.encode(entity2[2], add_special_tokens=False)) - 1
# 构造输入张量
input_ids = encoded_dict['input_ids']
attention_mask = encoded_dict['attention_mask']
token_type_ids = encoded_dict['token_type_ids']
entity1_mask = [0] * len(input_ids)
for i in range(entity1_start, entity1_end + 1):
entity1_mask[i] = 1
entity2_mask = [0] * len(input_ids)
for i in range(entity2_start, entity2_end + 1):
entity2_mask[i] = 1
# 转换为PyTorch张量
input_ids = torch.tensor(input_ids).unsqueeze(0)
attention_mask = torch.tensor(attention_mask).unsqueeze(0)
token_type_ids = torch.tensor(token_type_ids).unsqueeze(0)
entity1_mask = torch.tensor(entity1_mask).unsqueeze(0)
entity2_mask = torch.tensor(entity2_mask).unsqueeze(0)
# 前向传播
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=None,
entity1_mask=entity1_mask,
entity2_mask=entity2_mask
)
# 预测实体关系类别
logits = outputs[0]
_, predicted = torch.max(logits, 1)
relationship = labels[predicted.item()]
print("实体1:", entity1[2])
print("实体2:", entity2[2])
print("实体关系:", relationship)
```
需要注意的是,上述代码仅供参考,具体实现可能因数据集、模型和任务不同而有所变化。
阅读全文