tensorflow框架下BERT实体关系联合抽取Python代码,bert4keras

时间: 2024-02-03 15:13:38 浏览: 131
以下是使用bert4keras实现BERT实体关系联合抽取的Python代码示例: ```python import json import numpy as np from bert4keras.backend import keras, K from bert4keras.layers import Loss from bert4keras.models import build_transformer_model from bert4keras.optimizers import Adam from bert4keras.tokenizers import Tokenizer from keras.layers import Dense from keras.models import Model # 模型参数 maxlen = 128 epochs = 10 batch_size = 16 learning_rate = 2e-5 categories = ["疾病和诊断", "影像检查", "实验室检验", "药物"] num_classes = len(categories) # BERT配置 config_path = '/path/to/bert_config.json' checkpoint_path = '/path/to/bert_model.ckpt' dict_path = '/path/to/vocab.txt' # 加载数据 def load_data(filename): D = [] with open(filename, encoding='utf-8') as f: for l in f: l = json.loads(l) d = {'text': l['text'], 'spo_list': []} for spo in l['spo_list']: for o in spo['object']: d['spo_list'].append((spo['subject'], spo['predicate'], o)) D.append(d) return D # 加载数据集 train_data = load_data('/path/to/train_data.json') valid_data = load_data('/path/to/valid_data.json') test_data = load_data('/path/to/test_data.json') # 建立分词器 tokenizer = Tokenizer(dict_path, do_lower_case=True) class data_generator: """数据生成器 """ def __init__(self, data, batch_size=32, shuffle=True): self.data = data self.batch_size = batch_size self.shuffle = shuffle self.steps = len(self.data) // self.batch_size if len(self.data) % self.batch_size != 0: self.steps += 1 def __len__(self): return self.steps def __iter__(self): while True: idxs = list(range(len(self.data))) if self.shuffle: np.random.shuffle(idxs) X1, X2, S, Y = [], [], [], [] for i in idxs: d = self.data[i] text = d['text'][:maxlen] x1, x2 = tokenizer.encode(text) s = np.zeros(len(text)) for spo in d['spo_list']: subject = spo[0][:maxlen] object = spo[2][:maxlen] start = text.find(subject) if start != -1: end = start + len(subject) - 1 s[start:end+1] = 1 # 构建标注数据 predicate = spo[1] y = np.zeros(num_classes) y[categories.index(predicate)] = 1 X1.append(x1) X2.append(x2) S.append(s) Y.append(y) if len(X1) == 0: continue X1 = keras.preprocessing.sequence.pad_sequences(X1, maxlen=maxlen) X2 = keras.preprocessing.sequence.pad_sequences(X2, maxlen=maxlen) S = keras.preprocessing.sequence.pad_sequences(S, maxlen=maxlen) Y = np.array(Y) yield [X1, X2, S], Y # 构建模型 bert_model = build_transformer_model( config_path, checkpoint_path, model='bert', return_keras_model=False, ) output_layer = 'Transformer-%s-FeedForward-Norm' % (bert_model.num_hidden_layers - 1) output = bert_model.get_layer(output_layer).output output = Dense(num_classes, activation='sigmoid')(output) model = Model(bert_model.input, output) model.summary() # 损失函数 class MultiLoss(Loss): """多任务学习的损失函数 """ def compute_loss(self, inputs, mask=None): y_true, y_pred = inputs y_true = K.cast(y_true, y_pred.dtype) loss = K.binary_crossentropy(y_true, y_pred) return loss loss = MultiLoss().compute_loss # 优化器 optimizer = Adam(learning_rate) # 编译模型 model.compile(loss=loss, optimizer=optimizer) # 训练模型 train_generator = data_generator(train_data, batch_size) valid_generator = data_generator(valid_data, batch_size) test_generator = data_generator(test_data, batch_size) model.fit_generator( train_generator.forfit(), steps_per_epoch=len(train_generator), epochs=epochs, validation_data=valid_generator.forfit(), validation_steps=len(valid_generator) ) # 评估模型 model.evaluate_generator(test_generator.forfit(), steps=len(test_generator)) # 保存模型 model.save_weights('/path/to/model.weights') ```
阅读全文

相关推荐

zip
【资源说明】 课程大作业基于bert4keras开放领域的关系抽取python源码+部署说明.zip 1、该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 欢迎下载,欢迎交流,互相学习进步! 本项目是利用深度学习技术进行开放领域的关系抽取,算法模型可以处理多个三元组。 开放领域关系抽取是从文本中抽取三元组,不同于限定域的关系抽取,开放关系抽取并不限制关系的种类和数量,即所识别的关系(relation)在文本中体现。于是将("n", 标签)组合成一个大类,然后可以将开放关系抽取转化为一个NER问题,其中n对应的是文本中三元组的数量。对于NER任务,我们采用[GPLinker模型](https://kexue.fm/archives/8926),相应代码在openRE_train_v2中。 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.9 项目目录 ├── bert4keras ├── data    存放数据 ├── pretrained_model    存放预训练模型 ├── extract_chinese_and_punct.py ├── openRE_train.py    训练代码 ├── openRE_train_v2.py    训练代码v2 ├── openRE_predict.py    评估和测试代码 数据集 采用[COER语料库],对原始数据进行了筛选,处理好的数据存放在data/CORE文件夹下。 "text": "巴基斯坦国家灾害管理局局长法鲁克、巴内阁事务部长穆罕默德", "sro_list": [{"subject": "巴", "relation": "内阁事务部长", "object": "穆罕默德"}, {"subject": "巴基斯坦国家灾害管理局", "relation": "局长", "object": "法鲁克"}] 三元组中的实体和关系均出现在文本中。 训练集和验证集中的每个句子都有n个三元组(2=<n<=4),数据统计情况: | 数据集 | 2个 | 3个 | 4个 | | :------:| :------: | :------: | :------: | | train | 8858 | 767 | 264 | | dev | 2238 | 177 | 58 | 使用说明 1.[下载预训练语言模型] 可采用BERT-Base, Chinese等模型 2.构建数据集(数据集已处理好)   train.json和dev.json 3.训练模型 python openRE_train.py 4.评估和测试 python openRE_predict.py 结果 | 数据集 | f1 | precision | recall | | :------:| :------: | :------: | :------: | | train | 0.92781 | 0.92947 | 0.92616 | | dev | 0.62125 | 0.61854 | 0.62397 | | dev(v2) | 0.76922 | 0.80624 | 0.73545 |

大家在看

recommend-type

计算机控制实验74HC4051的使用

天津大学本科生计算机控制技术实验报告,欢迎参考
recommend-type

软件工程-总体设计概述(ppt-113页).ppt

软件工程-总体设计概述(ppt-113页).ppt
recommend-type

多文档应用程序MDI-vc++、MFC基础教程

2.多文档应用程序(MDI) 在多文档程序中,允许用户在同一时刻操作多个文档。例如,Viusal C++ 6.0集成开发环境就是一个多文档应用程序,如下图所示。
recommend-type

中国移动5G规模试验测试规范--核心网领域--SA基础网元性能测试分册.pdf

目 录 前 言............................................................................................................................ 1 1. 范围........................................................................................................................... 2 2. 规范性引用文件....................................................................................................... 2 3. 术语、定义和缩略语............................................................................................... 2 3.1. 测试对象........................................................................................................ 3 4. 测试对象及网络拓扑............................................................................................... 3 ................................................................................................................................ 3 4.1. 测试组网........................................................................................................ 3 5. 业务模型和测试方法............................................................................................... 6 5.1. 业务模型........................................................................................................ 6 5.2. 测试方法........................................................................................................ 7 6. 测试用例................................................................................................................... 7 6.1. AMF性能测试................................................................................................ 7 6.1.1. 注册请求处理能力测试..................................................................... 7 6.1.2. 基于业务模型的单元容量测试.........................................................9 6.1.3. AMF并发连接管理性能测试........................................................... 10 6.2. SMF性能测试............................................................................................... 12 6.2.1. 会话创建处理能力测试................................................................... 12 6.2.2. 基
recommend-type

CAN分析仪 解析 DBC uds 源码

CANas分析软件.exe 的源码,界面有些按钮被屏蔽可以自行打开,5分下载 绝对惊喜 意想不到的惊喜 仅供学习使用

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

BERT实现情感分析.

BERT,全称Bidirectional Encoder Representations from Transformers,是由Google在2018年底推出的...在实践中,通过Keras等深度学习框架,我们可以方便地实现BERT模型的加载和微调,从而在NLP任务中获得出色的表现。
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。