三维混淆矩阵keras代码
时间: 2023-08-14 20:32:06 浏览: 125
keras训练曲线,混淆矩阵,CNN层输出可视化实例
下面是使用Keras实现的三维混淆矩阵的代码示例:
```python
import numpy as np
from keras import backend as K
def confusion_matrix_3d(y_true, y_pred):
"""
Computes a 3D confusion matrix.
Args:
y_true: true labels, tensor with shape (batch_size, num_classes, num_samples)
y_pred: predicted labels, tensor with shape (batch_size, num_classes, num_samples)
Returns:
3D confusion matrix, tensor with shape (num_classes, num_classes, num_samples)
"""
y_true = K.argmax(y_true, axis=1)
y_pred = K.argmax(y_pred, axis=1)
num_samples = K.shape(y_true)[-1]
num_classes = K.int_shape(y_true)[0]
cm = np.zeros((num_classes, num_classes, num_samples))
for i in range(num_samples):
cm[:,:,i] = np.array(K.eval(K.tf.math.confusion_matrix(y_true[:,i], y_pred[:,i])))
return cm
```
在使用此函数时,需要将真实值和预测值转换为one-hot编码的形式,以便使用Keras的`argmax`函数进行轴变换。此函数会返回一个形状为`(num_classes, num_classes, num_samples)`的三维混淆矩阵,其中`num_classes`是类别数,`num_samples`是样本数。
阅读全文