一维som代码keras
时间: 2024-01-19 18:02:51 浏览: 138
以下是使用Keras实现一维SOM的示例代码:
```python
from keras.layers import Layer
import tensorflow as tf
import numpy as np
class SOMLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(SOMLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.input_dim = input_shape[-1]
self.weight = self.add_weight(name='SOM_weight', shape=(self.output_dim, self.input_dim), initializer='uniform', trainable=True)
super(SOMLayer, self).build(input_shape)
def call(self, inputs):
# Calculate distances between weight vectors and inputs
# using euclidean distance
euclidean_distances = tf.reduce_sum(tf.square(tf.subtract(tf.expand_dims(inputs, 1), tf.expand_dims(self.weight, 0))), axis=-1)
# Get the index of the closest weight vector
winner_indices = tf.argmin(euclidean_distances, axis=-1)
# Get the coordinates of the closest weight vector in the SOM grid
winner_coords = tf.stack([tf.mod(winner_indices, self.output_dim), tf.div(winner_indices, self.output_dim)], axis=-1)
return winner_coords
def compute_output_shape(self, input_shape):
return (None, 2) # Return the coordinates of the closest weight vector in the SOM grid
```
这个代码实现了一个Keras的自定义层,它将输入映射到SOM网络中最接近的神经元。在这个例子中,我们使用欧几里得距离作为权重向量和输入之间的距离度量。在该层的实现中,我们首先计算输入与权重向量之间的欧几里得距离,然后获取最接近的权重向量的索引和其在SOM网格中的坐标并返回。
阅读全文