res = cv2.matchTemplate(char, template, cv2.TM_CCOEFF_NORMED) cv2.error: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\templmatch.cpp:588: error: (-215:Assertion failed) corr.rows <= img.rows + templ.rows - 1 && corr.cols <= img.cols + templ.cols - 1 in function 'cv::crossCorr'
时间: 2023-11-23 10:49:58 浏览: 566
这个错误的意思是在模板匹配的过程中,计算得到的相关系数矩阵的大小超出了原始图像和模板图像的大小限制。具体来说,这个错误提示说明相关系数矩阵的行数(corr.rows)超出了(img.rows + templ.rows - 1),或者列数(corr.cols)超出了(img.cols + templ.cols - 1)。
这通常是由于模板图像的大小和位置与原始图像不匹配,或者使用的模板匹配方法不适合当前的应用场景导致的。你可以尝试调整模板图像的大小和位置,或者尝试使用其他的模板匹配方法(如cv2.TM_SQDIFF_NORMED或cv2.TM_CCORR_NORMED)来解决这个问题。同时,检查一下你的代码是否有其他错误或者变量定义不当的情况。
相关问题
opencv中cv.TM_CCORR_NORMED标准相关系数匹配最小值是0最大值是1
是的,您说得对。在OpenCV中,cv.TM_CCORR_NORMED方法计算的是归一化的互相关系数,其取值范围在0到1之间,其中1表示最好的匹配,0表示最差的匹配。因此,使用cv.TM_CCORR_NORMED方法进行标准相关系数匹配时,匹配结果越接近1,表示源图像中的目标与模板越相似。感谢您的指正。
解释下面这段代码: for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out
这部分代码是一个Graph Convolutional Network (GCN)的前向函数。首先,对于一个图中每个连接的边,将其变换为针对batch中所有节点的连接边。然后,对于每个节点,通过GCN层和学习到的邻居节点之间的注意力矩阵,将其信息聚合到其邻居节点上。最后,对于每个节点都会得到一个向量表示,通过与输入的向量嵌入相乘来进行特征融合。最后一步则是将所有节点的结果收集起来并且分批次处理。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)