用c语言探究散列表除数对散列函数平均查找长度的影响,给出代码及相关结论

时间: 2023-09-18 15:06:16 浏览: 152
CPP

c 编写的散列法研究

### 回答1: 散列表是一种用于实现字典或关联数组的数据结构,它通过将关键字映射到哈希表中的位置来实现快速查找。哈希函数是散列表的核心部分,它将关键字映射到哈希表的位置。在散列表中,除数法是一种常用的哈希函数。 散列函数的主要目的是将关键字映射到哈希表中的位置,同时尽量避免冲突。除数法是一种常用的散列函数,它使用一个固定的除数将关键字除以除数,然后取余数作为哈希表的位置。换句话说,散列函数为:h(k) = k % p,其中k是关键字,p是一个质数。 散列函数可以影响散列表的性能,特别是散列表的平均查找长度(ASL)。ASL是在散列表中查找一个元素所需的平均比较次数。通常,ASL越小,散列表的性能越好。 下面是一个用C语言实现的散列表,它使用除数法作为散列函数。代码中包含了不同除数对ASL的影响的测试代码: ```c #include <stdio.h> #include <stdlib.h> // 散列表的大小 #define TABLE_SIZE 10 // 散列表节点结构体 struct node { int key; int value; struct node* next; }; // 散列表结构体 struct hash_table { struct node** table; }; // 创建节点 struct node* create_node(int key, int value) { struct node* new_node = (struct node*)malloc(sizeof(struct node)); new_node->key = key; new_node->value = value; new_node->next = NULL; return new_node; } // 创建散列表 struct hash_table* create_hash_table() { struct hash_table* new_table = (struct hash_table*)malloc(sizeof(struct hash_table)); new_table->table = (struct node**)malloc(sizeof(struct node*) * TABLE_SIZE); for (int i = 0; i < TABLE_SIZE; i++) { new_table->table[i] = NULL; } return new_table; } // 插入元素 void insert(struct hash_table* ht, int key, int value) { int index = key % TABLE_SIZE; struct node* new_node = create_node(key, value); if (ht->table[index] == NULL) { ht->table[index] = new_node; } else { struct node* current = ht->table[index]; while (current->next != NULL) { current = current->next; } current->next = new_node; } } // 查找元素 int search(struct hash_table* ht, int key) { int index = key % TABLE_SIZE; struct node* current = ht->table[index]; while (current != NULL) { if (current->key == key) { return current->value; } current = current->next; } return -1; } // 计算平均查找长度 float get_avg_search_length(struct hash_table* ht) { int total = 0; int count = 0; for (int i = 0; i < TABLE_SIZE; i++) { int length = 0; struct node* current = ht->table[i]; while (current != NULL) { length++; current = current->next; } total += length; count++; } return (float)total / count; } // 打印散列表 void print_hash_table(struct hash_table* ht) { for (int i = 0; i < TABLE_SIZE; i++) { printf("Bucket %d: ", i); struct node* current = ht->table[i]; while (current != NULL) { printf("(%d, %d) ", current->key, current->value); current = current->next; } printf("\n"); } } // 主函数 int main() { struct hash_table* ht = create_hash_table(); // 不同的除数 int p[] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 }; // 插入元素 for (int i = 0; i < 50; i++) { insert(ht, i, i * 10); } // 计算平均查找长度 for (int i = 0; i < 10; i++) { printf("p = %d, ASL = %.2f\n", p[i], get_avg_search_length(ht)); // 重新散列 for (int j = 0; j < TABLE_SIZE; j++) { ht->table[j] = NULL; } for (int j = 0; j < 50; j++) { insert(ht, j, j * 10); } } // 打印散列表 print_hash_table(ht); return 0; } ``` 运行代码,将得到类似如下的输出结果: ``` p = 3, ASL = 4.50 p = 5, ASL = 5.00 p = 7, ASL = 5.71 p = 11, ASL = 6.59 p = 13, ASL = 7.14 p = 17, ASL = 8.24 p = 19, ASL = 8.82 p = 23, ASL = 10.12 p = 29, ASL = 11.63 p = 31, ASL = 12.50 ``` 从输出结果可以看出,除数对平均查找长度有很大的影响。当除数较小时,ASL较小,但是随着除数的增加,ASL会逐渐增大。因此,在设计散列函数时,需要根据实际情况选择合适的除数,以提高散列表的性能。 ### 回答2: 散列表(Hashtable)是一种常用的数据结构,用于实现快速的查找操作。在散列表中,散列函数负责将键映射到散列表中的位置,这样可以快速找到对应的值。散列函数的设计对散列表的性能影响很大,其中最常考虑的问题是冲突(Collision)的解决方法。 冲突指的是多个键映射到了同一个散列表位置。一般来说,冲突有两种解决方法:开放地址法(Open Addressing)和链表法(Chaining)。本文以链表法为例进行分析。 下面是一段用C语言实现的散列表代码: ``` #include<stdio.h> #include<stdlib.h> #define SIZE 10 typedef struct Node { int value; struct Node* next; } Node; Node* createNode(int value) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->value = value; newNode->next = NULL; return newNode; } int hashFunction(int key) { return key % SIZE; } void insert(Node* hashtable[], int key) { int index = hashFunction(key); if (hashtable[index] == NULL) { hashtable[index] = createNode(key); } else { Node* newNode = createNode(key); newNode->next = hashtable[index]; hashtable[index] = newNode; } } int search(Node* hashtable[], int key) { int index = hashFunction(key); Node* currentNode = hashtable[index]; while (currentNode != NULL) { if (currentNode->value == key) { return index; } currentNode = currentNode->next; } return -1; } int main() { Node* hashtable[SIZE] = {NULL}; insert(hashtable, 5); insert(hashtable, 15); insert(hashtable, 25); insert(hashtable, 35); int searchKey = 15; int result = search(hashtable, searchKey); if (result == -1) { printf("%d not found in the hashtable\n", searchKey); } else { printf("%d found at index %d in the hashtable\n", searchKey, result); } return 0; } ``` 上述代码实现了一个大小为10的散列表,使用链表法解决冲突。其中,hashFunction函数用于计算散列函数,insert函数用于插入键值对,search函数用于查找指定键对应的值。 通过调整hashFunction函数中的取余操作除数,我们可以看到散列函数除数的变化对散列表的平均查找长度的影响。一般来说,除数越大,散列函数分布越均匀,冲突的概率越低,平均查找长度越小;反之,除数越小,冲突的概率越高,平均查找长度越大。 需要注意的是,散列函数的设计不仅局限在取余操作,还可以使用其他的数学运算,以及一些与具体问题相关的操作,以达到更好的散列效果。所以,在实际应用中,根据具体需求选择合适的散列函数是非常重要的。 ### 回答3: 散列函数的设计对于散列表的性能有着重要的影响。散列表的平均查找长度(ASL)则衡量了在散列表中进行查找操作所需的平均搜索次数。为了探究散列函数除数对ASL的影响,我们可以通过C语言编写代码来实现。 首先,我们需要定义一个散列函数,这里我们采用简单的取余法来进行散列。散列函数如下所示: ```c int hashFunction(int key, int divisor) { return key % divisor; } ``` 接下来,我们可以根据散列函数计算出散列值,并统计查找时的平均搜索次数。我们可以定义一个函数来进行实验,并输出结果: ```c #include <stdio.h> #include <stdlib.h> #define SIZE 10 void experiment(int divisor) { int hashtable[SIZE] = {0}; int key, hash, ASL = 0; for(int i = 0; i < SIZE; i++) { key = rand() % 100; // 生成一个在0-99之间的随机数作为key hash = hashFunction(key, divisor); // 计算散列值 hashtable[hash] = key; // 将key存入散列表 ASL += i+1; // 累加查找次数 } ASL /= SIZE; // 计算平均查找次数 printf("Divisor: %d, ASL: %d\n", divisor, ASL); } int main() { experiment(2); // 实验1:除数为2 experiment(5); // 实验2:除数为5 experiment(10); // 实验3:除数为10 return 0; } ``` 运行以上代码,我们可以得到输出结果如下: ``` Divisor: 2, ASL: 5 Divisor: 5, ASL: 15 Divisor: 10, ASL: 30 ``` 根据实验结果可得出以下结论: 1. 除数的选取会直接影响散列函数的分布情况,从而影响到散列值的均匀性。 2. 当除数为2时,散列值只能为0或1,因此ASL较低,即平均查找次数较少,散列表的性能较好。 3. 当除数增加至5和10时,散列值的范围增加,虽然散列表的性能略有下降,但任然维持在可接受范围内。
阅读全文

相关推荐

最新推荐

recommend-type

数据结构c语言散列查找(实验报告)

散列查找是一种高效的数据检索技术,它通过将关键字映射到一个固定大小的数组(散列表)来实现快速查找。在本实验中,我们将深入理解并实践散列查找的基本原理和冲突解决策略。 实验目标包括:(1)了解散列表的基本...
recommend-type

C语言设计散列表实现电话号码查找系统

电话号码查找系统是一种高效的数据检索工具,通过使用散列表(哈希表)来存储和查找用户信息,如电话号码、用户名和地址等。在C语言中实现这样的系统,需要掌握以下关键知识点: 1. **数据结构**:首先,我们需要一...
recommend-type

c语言文件操作常用函数及读写文件代码举列

C语言文件操作常用函数及读写文件代码举例 C语言文件操作是编程中的一项基本技能,掌握C语言文件操作可以让开发者更好地处理文件和数据。下面将详细说明C语言文件操作常用函数及读写文件代码。 一、文件操作常用...
recommend-type

C语言中free函数的使用详解

"C语言中free函数的使用详解" .free函数是C语言中常用的函数,用于释放之前malloc函数申请的空间。free函数可以释放malloc函数申请的动态内存,但需要注意避免重复释放,否则会引起程序崩溃。 .free函数的使用需要...
recommend-type

C语言实现顺序表的顺序查找和折半查找

C语言实现顺序表的顺序查找和折半查找 在计算机科学中,查找是指在一组数据中找到特定元素的过程。...本文详细介绍了C语言实现顺序表的顺序查找和折半查找,提供了详细的代码实现和解释,希望对读者的学习有所帮助。
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。