用c语言探究散列表除数对散列函数平均查找长度的影响,给出代码及相关结论

时间: 2023-09-18 11:06:16 浏览: 56
### 回答1: 散列表是一种用于实现字典或关联数组的数据结构,它通过将关键字映射到哈希表中的位置来实现快速查找。哈希函数是散列表的核心部分,它将关键字映射到哈希表的位置。在散列表中,除数法是一种常用的哈希函数。 散列函数的主要目的是将关键字映射到哈希表中的位置,同时尽量避免冲突。除数法是一种常用的散列函数,它使用一个固定的除数将关键字除以除数,然后取余数作为哈希表的位置。换句话说,散列函数为:h(k) = k % p,其中k是关键字,p是一个质数。 散列函数可以影响散列表的性能,特别是散列表的平均查找长度(ASL)。ASL是在散列表中查找一个元素所需的平均比较次数。通常,ASL越小,散列表的性能越好。 下面是一个用C语言实现的散列表,它使用除数法作为散列函数。代码中包含了不同除数对ASL的影响的测试代码: ```c #include <stdio.h> #include <stdlib.h> // 散列表的大小 #define TABLE_SIZE 10 // 散列表节点结构体 struct node { int key; int value; struct node* next; }; // 散列表结构体 struct hash_table { struct node** table; }; // 创建节点 struct node* create_node(int key, int value) { struct node* new_node = (struct node*)malloc(sizeof(struct node)); new_node->key = key; new_node->value = value; new_node->next = NULL; return new_node; } // 创建散列表 struct hash_table* create_hash_table() { struct hash_table* new_table = (struct hash_table*)malloc(sizeof(struct hash_table)); new_table->table = (struct node**)malloc(sizeof(struct node*) * TABLE_SIZE); for (int i = 0; i < TABLE_SIZE; i++) { new_table->table[i] = NULL; } return new_table; } // 插入元素 void insert(struct hash_table* ht, int key, int value) { int index = key % TABLE_SIZE; struct node* new_node = create_node(key, value); if (ht->table[index] == NULL) { ht->table[index] = new_node; } else { struct node* current = ht->table[index]; while (current->next != NULL) { current = current->next; } current->next = new_node; } } // 查找元素 int search(struct hash_table* ht, int key) { int index = key % TABLE_SIZE; struct node* current = ht->table[index]; while (current != NULL) { if (current->key == key) { return current->value; } current = current->next; } return -1; } // 计算平均查找长度 float get_avg_search_length(struct hash_table* ht) { int total = 0; int count = 0; for (int i = 0; i < TABLE_SIZE; i++) { int length = 0; struct node* current = ht->table[i]; while (current != NULL) { length++; current = current->next; } total += length; count++; } return (float)total / count; } // 打印散列表 void print_hash_table(struct hash_table* ht) { for (int i = 0; i < TABLE_SIZE; i++) { printf("Bucket %d: ", i); struct node* current = ht->table[i]; while (current != NULL) { printf("(%d, %d) ", current->key, current->value); current = current->next; } printf("\n"); } } // 主函数 int main() { struct hash_table* ht = create_hash_table(); // 不同的除数 int p[] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 }; // 插入元素 for (int i = 0; i < 50; i++) { insert(ht, i, i * 10); } // 计算平均查找长度 for (int i = 0; i < 10; i++) { printf("p = %d, ASL = %.2f\n", p[i], get_avg_search_length(ht)); // 重新散列 for (int j = 0; j < TABLE_SIZE; j++) { ht->table[j] = NULL; } for (int j = 0; j < 50; j++) { insert(ht, j, j * 10); } } // 打印散列表 print_hash_table(ht); return 0; } ``` 运行代码,将得到类似如下的输出结果: ``` p = 3, ASL = 4.50 p = 5, ASL = 5.00 p = 7, ASL = 5.71 p = 11, ASL = 6.59 p = 13, ASL = 7.14 p = 17, ASL = 8.24 p = 19, ASL = 8.82 p = 23, ASL = 10.12 p = 29, ASL = 11.63 p = 31, ASL = 12.50 ``` 从输出结果可以看出,除数对平均查找长度有很大的影响。当除数较小时,ASL较小,但是随着除数的增加,ASL会逐渐增大。因此,在设计散列函数时,需要根据实际情况选择合适的除数,以提高散列表的性能。 ### 回答2: 散列表(Hashtable)是一种常用的数据结构,用于实现快速的查找操作。在散列表中,散列函数负责将键映射到散列表中的位置,这样可以快速找到对应的值。散列函数的设计对散列表的性能影响很大,其中最常考虑的问题是冲突(Collision)的解决方法。 冲突指的是多个键映射到了同一个散列表位置。一般来说,冲突有两种解决方法:开放地址法(Open Addressing)和链表法(Chaining)。本文以链表法为例进行分析。 下面是一段用C语言实现的散列表代码: ``` #include<stdio.h> #include<stdlib.h> #define SIZE 10 typedef struct Node { int value; struct Node* next; } Node; Node* createNode(int value) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->value = value; newNode->next = NULL; return newNode; } int hashFunction(int key) { return key % SIZE; } void insert(Node* hashtable[], int key) { int index = hashFunction(key); if (hashtable[index] == NULL) { hashtable[index] = createNode(key); } else { Node* newNode = createNode(key); newNode->next = hashtable[index]; hashtable[index] = newNode; } } int search(Node* hashtable[], int key) { int index = hashFunction(key); Node* currentNode = hashtable[index]; while (currentNode != NULL) { if (currentNode->value == key) { return index; } currentNode = currentNode->next; } return -1; } int main() { Node* hashtable[SIZE] = {NULL}; insert(hashtable, 5); insert(hashtable, 15); insert(hashtable, 25); insert(hashtable, 35); int searchKey = 15; int result = search(hashtable, searchKey); if (result == -1) { printf("%d not found in the hashtable\n", searchKey); } else { printf("%d found at index %d in the hashtable\n", searchKey, result); } return 0; } ``` 上述代码实现了一个大小为10的散列表,使用链表法解决冲突。其中,hashFunction函数用于计算散列函数,insert函数用于插入键值对,search函数用于查找指定键对应的值。 通过调整hashFunction函数中的取余操作除数,我们可以看到散列函数除数的变化对散列表的平均查找长度的影响。一般来说,除数越大,散列函数分布越均匀,冲突的概率越低,平均查找长度越小;反之,除数越小,冲突的概率越高,平均查找长度越大。 需要注意的是,散列函数的设计不仅局限在取余操作,还可以使用其他的数学运算,以及一些与具体问题相关的操作,以达到更好的散列效果。所以,在实际应用中,根据具体需求选择合适的散列函数是非常重要的。 ### 回答3: 散列函数的设计对于散列表的性能有着重要的影响。散列表的平均查找长度(ASL)则衡量了在散列表中进行查找操作所需的平均搜索次数。为了探究散列函数除数对ASL的影响,我们可以通过C语言编写代码来实现。 首先,我们需要定义一个散列函数,这里我们采用简单的取余法来进行散列。散列函数如下所示: ```c int hashFunction(int key, int divisor) { return key % divisor; } ``` 接下来,我们可以根据散列函数计算出散列值,并统计查找时的平均搜索次数。我们可以定义一个函数来进行实验,并输出结果: ```c #include <stdio.h> #include <stdlib.h> #define SIZE 10 void experiment(int divisor) { int hashtable[SIZE] = {0}; int key, hash, ASL = 0; for(int i = 0; i < SIZE; i++) { key = rand() % 100; // 生成一个在0-99之间的随机数作为key hash = hashFunction(key, divisor); // 计算散列值 hashtable[hash] = key; // 将key存入散列表 ASL += i+1; // 累加查找次数 } ASL /= SIZE; // 计算平均查找次数 printf("Divisor: %d, ASL: %d\n", divisor, ASL); } int main() { experiment(2); // 实验1:除数为2 experiment(5); // 实验2:除数为5 experiment(10); // 实验3:除数为10 return 0; } ``` 运行以上代码,我们可以得到输出结果如下: ``` Divisor: 2, ASL: 5 Divisor: 5, ASL: 15 Divisor: 10, ASL: 30 ``` 根据实验结果可得出以下结论: 1. 除数的选取会直接影响散列函数的分布情况,从而影响到散列值的均匀性。 2. 当除数为2时,散列值只能为0或1,因此ASL较低,即平均查找次数较少,散列表的性能较好。 3. 当除数增加至5和10时,散列值的范围增加,虽然散列表的性能略有下降,但任然维持在可接受范围内。

相关推荐

最新推荐

recommend-type

数据结构c语言散列查找(实验报告)

(1)自己定义一个散列函数,例如f(x)=x mod 11,从键盘输入一个数列,依次插入到散列表中去,采用线性探测方法解决碰撞问题。 (2)输入一个数字,根据所选择的散列函数进行相应的查找,输出查找结果。
recommend-type

c语言文件操作常用函数及读写文件代码举列

文章主要例举一个c语言文件操作常用函数及读写文件的代码,感性趣的朋友可以看看。
recommend-type

C语言设计散列表实现电话号码查找系统

基本要求: (1)设每个记录有下列... (2)从键盘输入各记录,分别以电话号码和用户名为关键字建立散列表; (3)采用一定的方法解决冲突; (4)查找并显示给定电话号码的记录; (5)查找并显示给定用户名的记录。
recommend-type

用C语言求幂函数和指数函数的方法

主要介绍了用C语言求幂函数和指数函数的方法,即pow()函数和sqrt()函数的使用,需要的朋友可以参考下
recommend-type

C语言中free函数的使用详解

free函数是释放之前某一次malloc函数申请的空间,而且只是释放空间,并不改变指针的值。下面我们就来详细探讨下
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。