基于被动时反的 ac-MVDR 水下声源定位matlab代码
时间: 2023-07-15 07:15:52 浏览: 162
基于MATLAB的声源定位系统
以下是基于被动时反的 ac-MVDR 水下声源定位的 MATLAB 代码:
```matlab
% 定义声源位置(以米为单位)
sourcePos = [10, 20];
% 定义阵列位置(以米为单位)
arrayPos = [0, 0; 0, 1; 0, 2; 0, 3];
% 定义声速(以米/秒为单位)
c = 1500;
% 定义采样率(以Hz为单位)
fs = 8000;
% 定义信号时长(以秒为单位)
duration = 5;
% 生成接收到的声音信号
[samples, t] = generateSignal(sourcePos, arrayPos, c, fs, duration);
% 计算声源定位
estimatedPos = acmvdr(samples, arrayPos, c, fs);
% 输出结果
disp(['Estimated source position: ', num2str(estimatedPos(1)), ', ', num2str(estimatedPos(2))]);
function [samples, t] = generateSignal(sourcePos, arrayPos, c, fs, duration)
% 计算声源到阵列各个麦克风的距离
distances = sqrt(sum((arrayPos - sourcePos).^2, 2));
% 计算每个麦克风接收到的信号时延
delays = distances / c;
% 生成目标声源信号
sourceDuration = 2;
sourceSamples = generateSource(sourceDuration, fs);
% 生成每个麦克风接收到的信号
samples = zeros(length(arrayPos), duration * fs);
for i = 1:length(arrayPos)
micDelay = delays(i);
micSamples = generateMic(fs, duration, micDelay, sourceSamples);
samples(i,:) = micSamples;
end
% 计算时间轴
t = linspace(0, duration, duration * fs);
end
function sourceSamples = generateSource(duration, fs)
% 生成正弦波信号
frequency = 1000;
amplitude = 1;
t = linspace(0, duration, duration * fs);
sourceSamples = amplitude * sin(2 * pi * frequency * t);
end
function micSamples = generateMic(fs, duration, delay, sourceSamples)
% 计算时延对应的样点数
delaySamples = round(delay * fs);
% 延迟声源信号
delayedSource = [zeros(1, delaySamples), sourceSamples(1:end-delaySamples)];
% 生成噪声信号
noiseAmplitude = 0.1;
noiseSamples = noiseAmplitude * randn(1, duration * fs);
% 合成最终的接收到的信号
micSamples = delayedSource + noiseSamples;
end
function estimatedPos = acmvdr(samples, arrayPos, c, fs)
% 计算阵列中心位置
arrayCenter = mean(arrayPos, 1);
% 计算阵列中心到各个麦克风的距离
distances = sqrt(sum((arrayPos - arrayCenter).^2, 2));
% 计算阵列直径
arrayDiameter = max(distances) * 2;
% 计算声源到阵列中心的距离
sourceDist = sqrt(sum((arrayCenter - sourcePos).^2));
% 计算声源距离阵列的方向
sourceDir = (sourcePos - arrayCenter) / sourceDist;
% 计算波长
wavelength = c / fs;
% 计算阵列中心处的声波到达时间
centerTime = sourceDist / c;
% 计算接收到的信号的时间戳
timeStamps = centerTime - distances / c;
% 对信号进行STFT
windowLength = round(arrayDiameter / wavelength);
[S, F, T] = spectrogram(samples(1,:), windowLength, 0, [], fs);
nBins = length(F);
nFrames = length(T);
% 计算空间谱
spatialSpectrum = zeros(nBins, nFrames);
for i = 1:nFrames
frame = samples(:, (i-1)*windowLength+1:i*windowLength);
frameSpectrum = fft(frame, [], 2);
frameSpectrum = frameSpectrum(:, 1:nBins);
R = frameSpectrum * frameSpectrum' / windowLength;
W = steeringVector(F, arrayPos, sourceDir, c);
spatialSpectrum(:, i) = acmvdrSpectrum(R, W);
end
% 计算声源位置
[maxSpatialSpectrum, maxBin] = max(spatialSpectrum(:));
[maxBinIndex, maxFrameIndex] = ind2sub([nBins, nFrames], maxBin);
maxFrequency = F(maxBinIndex);
estimatedDelay = timeStamps(maxFrameIndex);
estimatedPos = arrayCenter + estimatedDelay * c * sourceDir;
end
function W = steeringVector(frequencies, arrayPos, sourceDir, c)
% 计算波长
wavelengths = c ./ frequencies;
% 计算到声源的距离
distances = sum((arrayPos - sourcePos).^2, 2).^(1/2);
% 计算相位差
phaseDifference = 2 * pi * distances ./ wavelengths;
% 计算方向向量
nMics = size(arrayPos, 1);
W = zeros(nMics, length(frequencies));
for i = 1:nMics
W(i,:) = exp(-1i * phaseDifference * dot(sourceDir, (arrayPos(i,:) - sourcePos)) / distances(i));
end
end
function spectrum = acmvdrSpectrum(R, W)
% 计算噪声协方差矩阵
Rn = R - trace(R) / size(R, 1) * eye(size(R, 1));
% 计算权重向量
Wopt = inv(Rn) * W / (W' * inv(Rn) * W);
% 计算空间谱
spectrum = 1 ./ (Wopt' * R * Wopt);
end
```
代码中使用了以下几个辅助函数:
- `generateSignal`:生成接收到的声音信号。
- `generateSource`:生成目标声源信号。
- `generateMic`:生成每个麦克风接收到的信号。
- `acmvdr`:计算声源定位。
- `steeringVector`:计算阵列的指向向量。
- `acmvdrSpectrum`:计算空间谱。
请注意,这个代码只是一个简单的演示,可能无法处理真实世界的复杂场景。如果您需要更精确的结果,请参考相关文献,并使用更复杂的算法。
阅读全文