h3)Y(i); B(i)=B(i)- sigma( (h1-0)h1(1-h1)+(h2-1)h2(1-h2)+(h3-0)h3(1-h3) ) ; else w1(i) = w1(i)-sigma(h1-0)h1(1-h1)X(i); w2(i) = w2(i)-sigma(h2-0)h2(1-h2)X(i); w3(i) = w3(i)-sigma (h3-1)h3(1-h3)X(i); w4(i) = w4(i)-sigma (h1-0)h1(1-h1)Y(i); w5(i) = w5(i)-sigma (h2-0)h2(1-h2)Y(i); w6(i) = w6(i)-sigma (h3-1)h3(1-h3)Y(i); B(i)=B(i)- sigma( (h1-0)h1(1-h1)+(h2-0 )h2(1-h2)+(h3-1 )h3(1-h3)); end end end plot(P ( :,1),P ( :,2), 'o ' ) ; hold on; flag = 0;M=[]; for x=-8: 0.3 : 8 for y=-8: 0.3:8 H=[]; for i=1:3n y1 = xw1(i)+yw4(i)+B(i) ; y2= xw2(i)+yw5(i)+B(i); y3= xw3(i)+yw6(i) +B(i) ; h1=1/(1+exp(-y1) ); h2=1/(1+exp(-y2) ); h3=1/(1+exp(-y3) ) ; H=[H; h1 h2 h3] ; end H1=mean (H ( 1 :n,1) ); H2=mean (H (n : 2n,2)) ; H3 =mean (H

时间: 2023-10-31 11:06:31 浏览: 163
很抱歉,这段代码缺少了最后的部分,无法判断其完整性和正确性。但是可以看出,这段代码使用了神经网络的基本原理,包括输入层、隐藏层和输出层,并且使用了 sigmoid 函数进行激活。其中,w1-w6 和 B 是神经网络中的参数,sigma 是学习率,X 和 Y 是输入的特征向量。 这段代码可能是针对某个具体问题进行的实现,所以缺少了一些必要的注释和说明,导致难以理解和使用。如果你有相关问题需要解决,可以提供更多的上下文信息和详细的问题描述,我将尽力提供帮助。
相关问题

w1(i) = w1(i)-sigma*(h1-0)*h1*(1-h1)*X(i); w2(i) = w2(i)-sigma*(h2-1)*h2*(1-h2)*X(i); w3(i) = w3(i)-sigma *(h3-0)*h3*(1-h3)*X(i); w4(i) = w4(i)-sigma *(h1-0)*h1*(1-h1)*Y(i); w5(i) = w5(i)-sigma *(h2-1)*h2*(1-h2)*Y(i); w6(i) = w6(i

)-sigma *(h3-0)*h3*(1-h3)*Y(i); 这段代码看起来是一个神经网络的反向传播算法中的权重更新步骤,其中w1-w6是权重矩阵,h1-h3是神经网络中的隐藏层节点的输出,X(i)和Y(i)是输入数据和对应的标签。sigma是学习率,用于控制权重的更新速度。具体来说,这段代码实现了一个3层神经网络的训练过程,其中隐藏层节点使用Sigmoid函数作为激活函数,输出层节点使用线性函数,损失函数为均方误差。

clear all; clc; source_img=imread('C:\Users\LENOVO\Desktop\yes.jpg');%读取图片 [m,n,p]=size(source_img);%计算图片的行数列数层数 %==========从RGB转换到HSV======================= hsv_img=rgb2hsv(source_img); h=hsv_img(:,:,1); s=hsv_img(:,:,2); v=hsv_img(:,:,3); figure; subplot(221);imshow(source_img); subplot(222);imshow(h); subplot(223);imshow(s); subplot(224);imshow(v); %============V分量小波包分解======================================== [cc,ss]=wavedec2(v,1,'haar'); cA=appcoef2(cc,ss,'haar',1); %cc:小波分解的小波系数矩阵;ss:小波分解对应的尺度矩阵;分解的层数为1 cH=detcoef2('h',cc,ss,1); %h:提取水平高频;v:垂直高频;d:对角高频 cV=detcoef2('v',cc,ss,1); cD=detcoef2('d',cc,ss,1); cA1=mapminmax(cA,0,1);%归一化处理 figure; subplot(221);imshow(cA1,[]);title('(a) 近似分量cA'); subplot(222);imshow(cH,[]);title('(b) 细节分量cH'); subplot(223);imshow(cV,[]);title('(c) 细节分量cV'); subplot(224);imshow(cD,[]);title('(d) 细节分量cD'); %=============近似分量cA双边滤波================================== w = 3; % bilateral filter half-width sigma = [3 0.2]; % bilateral filter standard deviations cA2=bfilter2(cA1,w,sigma); %双边滤波 hsize=15; sigma1=15; sigma2=85; sigma3=265; H1=fspecial('gaussian',hsize,sigma1); H2=fspecial('gaussian',hsize,sigma2); H3=fspecial('gaussian',hsize,sigma3); img1=conv2(v,H1,'same'); img2=conv2(v,H2,'same'); img3=conv2(v,H3,'same'); imggaus=1/3*img1+1/3*img2+1/3*img3; alpha5=0.1; k5=alpha5*sum(s(:))/(m*n); vnew5=v*(1+k5)./(max(v,imggaus)+k5); X1=v(:)'; X2=vnew5(:)'; X=[X1 X2]; C=cov(X1,X2); [V,D]=eig(C); diagD=diag(D); if diagD(1)>diagD(2) V1=V(:,1); else V1=V(:,2); end w1=V1(1)/(V1(1)+V1(2)); w2=V1(2)/(V1(1)+V1(2)); recon_set=w1*v+w2*vnew5; %==============HSV转换RGB========================================= hsv(:,:,1)=h; hsv(:,:,2)=s; hsv(:,:,3)=recon_set; rgb_img=hsv2rgb(hsv); figure; subplot(121);imshow(source_img);%显示原图 subplot(122);imshow(rgb_img);%显示增强后的图 根据代码写结果说明及分析

根据代码,您的实验是对低照度图像进行增强。以下是代码的结果说明及分析: 1. 代码中读取了一张名为 "yes.jpg" 的图像,并将其转换为HSV颜色空间。 2. 代码将HSV图像分解为亮度分量(V通道)和色调分量(H通道)以及饱和度分量(S通道)。 3. V分量进行了小波包分解,得到近似分量(cA)和细节分量(cH、cV、cD)。 4. 近似分量cA经过归一化处理,并进行了双边滤波。 5. 使用高斯滤波器对V分量进行了滤波处理,得到三个滤波后的图像img1、img2、img3,并将它们融合得到imggaus。 6. 计算一个权重参数alpha5,并根据该参数将V分量进行增强处理,得到vnew5。 7. 进行主成分分析(PCA),将v和vnew5进行线性组合,得到重构集合recon_set。 8. 最后,将H、S、recon_set三个通道重新组合为HSV图像,并将其转换回RGB颜色空间,得到增强后的图像rgb_img。 根据这段代码,您实现了一个基于HSV颜色空间和小波包分解的低照度图像增强方法,并结合了双边滤波和主成分分析技术。通过调整权重参数和滤波器的参数,可以对图像的亮度、对比度和细节进行增强。最终的增强效果可以在显示增强后的图像rgb_img中观察到。 请注意,以上分析仅基于提供的代码进行推测,实际结果可能会有所不同。如果您有任何其他问题或需要进一步的帮助,请随时提问。
阅读全文

相关推荐

最新推荐

recommend-type

H3CNE(GB0-191)V7.0题库.pdf

【H3CNE(GB0-191)V7.0】认证是华三通信技术有限公司(H3C)推出的一项针对初级网络工程师的资格考试。该认证旨在验证考生在网络基础、网络设备操作与配置、网络故障排除等方面的基础知识和技能。GB0-191是这个认证...
recommend-type

H3CNE-Security安全(GB0-510)题库13-7.docx

H3C认证之H3CNE-Security安全认证,(代号:GB0-510)考试题库
recommend-type

H3CE GB10-130题库

1. 答案:B - 这可能涉及到选择最佳网络设备或解决方案的场景,需要理解不同设备的特点和适用环境。 2. 答案:A - 可能涉及到产品特性的对比,如性能、稳定性、价格等,需要熟悉华为网络产品的核心优势。 3. 答案...
recommend-type

H3CNE-Security安全(GB0-510)题库13-3.docx

H3C认证之H3CNE-Security安全认证,(代号:GB0-510)考试题库
recommend-type

H3C-WLAN--题库--_GB0-340.pdf

H3C-WLAN--题库--_GB0-340 华三最新的WLAN题库,资源难找,请大家自行下载,可以帮助您顺利通过考试
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。