请为我解释这段代码,并将输入由视频改成两张图片: VideoCapture capture; //capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\video.avi"); capture.open("D:\\OpenCV\\opencv\\sources\\samples\\data\\vtest.avi"); if (!capture.isOpened()) { return 0; } Mat pre_gray,

时间: 2023-07-17 09:57:56 浏览: 153
这段代码使用了OpenCV库来打开一个视频文件并读取帧。以下是代码的解释: 1. `VideoCapture capture;` - 创建一个VideoCapture对象,用于读取视频帧。 2. `capture.open("D:\\opencv_c++\\opencv_tutorial\\data\\images\\video.avi");` - 打开指定路径下的视频文件。这里的视频文件路径是一个示例,你可以根据实际情况修改路径。 3. `capture.open("D:\\OpenCV\\opencv\\sources\\samples\\data\\vtest.avi");` - 如果上一步无法打开视频文件,则尝试打开另一个示例视频文件。同样,你可以根据实际情况修改路径。 4. `if (!capture.isOpened())` - 检查视频文件是否成功打开。如果无法打开视频文件,表示出现了错误。 5. `Mat pre_gray,` - 创建了一个名为pre_gray的Mat对象,用于存储处理前的灰度图像。 如果你想将输入由视频改成两张图片,你可以修改代码如下: ```cpp Mat img1 = imread("path_to_image1.jpg"); Mat img2 = imread("path_to_image2.jpg"); if (img1.empty() || img2.empty()) { return 0; } cvtColor(img1, pre_gray, COLOR_BGR2GRAY); ``` 其中,`path_to_image1.jpg`和`path_to_image2.jpg`分别是你想要处理的两张图片的路径。代码会首先读取这两张图片,并将其中一张转换为灰度图像存储在pre_gray中。你可以继续在这之后的代码中使用pre_gray进行后续的处理。
阅读全文

相关推荐

void detectAndDisplay(Mat frame); /** Global variables / CascadeClassifier face_cascade; CascadeClassifier eyes_cascade; /* @function main / int main(int argc, const char* argv) { CommandLineParser parser(argc, argv, "{help h||}" "{face_cascade|data/haarcascades/haarcascade_frontalface_alt.xml|Path to face cascade.}" "{eyes_cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|Path to eyes cascade.}" "{camera|0|Camera device number.}"); parser.about("\nThis program demonstrates using the cv::CascadeClassifier class to detect objects (Face + eyes) in a video stream.\n" "You can use Haar or LBP features.\n\n"); parser.printMessage(); String face_cascade_name = samples::findFile(parser.get<String>("face_cascade")); String eyes_cascade_name = samples::findFile(parser.get<String>("eyes_cascade")); //-- 1. Load the cascades if (!face_cascade.load(face_cascade_name)) { cout << "--(!)Error loading face cascade\n"; return -1; }; if (!eyes_cascade.load(eyes_cascade_name)) { cout << "--(!)Error loading eyes cascade\n"; return -1; }; int camera_device = parser.get<int>("camera"); VideoCapture capture; //-- 2. Read the video stream capture.open(camera_device); if (!capture.isOpened()) { cout << "--(!)Error opening video capture\n"; return -1; } Mat frame; while (capture.read(frame)) { if (frame.empty()) { cout << "--(!) No captured frame -- Break!\n"; break; } //-- 3. Apply the classifier to the frame detectAndDisplay(frame); if (waitKey(10) == 27) { break; // escape } } return 0; }写出实现步骤

private slots: void on_open_video_btn_clicked(); void on_stop_video_btn_clicked(); void on_capture_btn_clicked(); void readFarme(); // 读取当前帧信息 void on_timeout_video_btn_clicked(); void on_keep_video_btn_clicked(); private: Ui::Widget *ui; QTimer *timer; QImage *imag; cv::VideoCapture *cam;// 视频获取结构, 用来作为视频获取函数的一个参数 cv::Mat frame;//申请IplImage类型指针,就是申请内存空间来存放每一帧图像 };根据以上代码修改以下代码void Widget::on_open_video_btn_clicked() { cam->open(0);//打开摄像头,从摄像头中获取视频 timer->start(30); //每30ms更新一次画面 QString fileName = QFileDialog::getSaveFileName(this, tr("Save Video"), ".", tr("Video Files (.avi)")); if (!fileName.isEmpty()) { int codec = cv::VideoWriter::fourcc('M', 'J', 'P', 'G');//设置视频编码格式 double fps = 30;//设置视频帧率 cv::VideoWriter writer(fileName.toStdString(), codec, fps, frame->size(), true);//创建VideoWriter对象 if (writer.isOpened()) { timer->stop();//停止更新画面 cam->release();//释放摄像头 while (true) //写入视频帧 { (*cam) >> (*frame);//继续读取下一帧 if(frame->empty()) { break;//如果没有帧,则退出循环 } cv::cvtColor(*frame,frame,cv::COLOR_BGR2RGB);//转化为Qt的RGB格式 QByteArray imageData((const char)frame->data, frame->cols * frame->rows * frame->elemSize()); imag->loadFromData(imageData, frame->cols, frame->rows, QImage::Format_RGB888); ui->captrue_lab->setPixmap(QPixmap::fromImage(*imag));//将图片显示到label上 qApp->processEvents();//处理UI事件 writer.write(*frame); } } } }

#include <iostream> #include <opencv2/imgcodecs.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/videoio.hpp> #include <opencv2/highgui.hpp> #include <opencv2/video.hpp> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui_c.h> using namespace cv; using namespace std; int main(int argc, char** argv) { VideoCapture capture("D:/dvp/sample/dataset/traffic.mp4"); if (!capture.isOpened()) { //error in opening the video input cerr << "Unable to open file!" << endl; return 0; } Mat frame, roi, hsv_roi, mask; // take first frame of the video capture >> frame; // setup initial location of window Rect track_window(300, 200, 100, 50); // simply hardcoded the values // set up the ROI for tracking roi = frame(track_window); cvtColor(roi, hsv_roi, COLOR_BGR2HSV); inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask); float range_[] = { 0, 180 }; const float* range[] = { range_ }; Mat roi_hist; int histSize[] = { 180 }; int channels[] = { 0 }; calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range); normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX); // Setup the termination criteria, either 10 iteration or move by atleast 1 pt TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1); while (true) { Mat hsv, dst; capture >> frame; if (frame.empty()) break; cvtColor(frame, hsv, COLOR_BGR2HSV); calcBackProject(&hsv, 1, channels, roi_hist, dst, range); // apply meanshift to get the new location meanShift(dst, track_window, term_crit); // Draw it on image rectangle(frame, track_window, 255, 2); imshow("img2", frame); setMouseCallback("img2", onMouse, 0); int keyboard = waitKey(30); if (keyboard == 'q' || keyboard == 27) break; } }帮我更改此段代码,使其能够通过gui使用鼠标来框选指定区域

将#!/usr/bin/env python2.7 -- coding: UTF-8 -- import time import cv2 from PIL import Image import numpy as np from PIL import Image if name == 'main': rtsp_url = "rtsp://127.0.0.1:8554/live" cap = cv2.VideoCapture(rtsp_url) #判断摄像头是否可用 #若可用,则获取视频返回值ref和每一帧返回值frame if cap.isOpened(): ref, frame = cap.read() else: ref = False #间隔帧数 imageNum = 0 sum=0 timeF = 24 while ref: ref,frame=cap.read() sum+=1 #每隔timeF获取一张图片并保存到指定目录 #"D:/photo/"根据自己的目录修改 if (sum % timeF == 0): # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转变成Image frame = Image.fromarray(np.uint8(frame)) frame = np.array(frame) # RGBtoBGR满足opencv显示格式 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) imageNum = imageNum + 1 cv2.imwrite("/root/Pictures/Pictures" + str(imageNum) + '.png', frame) print("success to get frame") #1毫秒刷新一次 k = cv2.waitKey(1) #按q退出 #if k==27:则为按ESC退出 if k == ord('q'): cap.release() break和#!/usr/bin/env python2.7 coding=UTF-8 import os import sys import cv2 from pyzbar import pyzbar def main(image_folder_path, output_file_name): img_files = [f for f in os.listdir(image_folder_path) if f.endswith(('.png'))] qr_codes_found = [] print("Image files:") for img_file in img_files: print(img_file) for img_file in img_files: img_path = os.path.join(image_folder_path,img_file) img = cv2.imread(img_path) barcodes = pyzbar.decode(img) for barcode in barcodes: if barcode.type == 'QRCODE': qr_data = barcode.data.decode("utf-8") qr_codes_found.append((img_file, qr_data)) unique_qr_codes = [] for file_name, qr_content in qr_codes_found: if qr_content not in unique_qr_codes: unique_qr_codes.append(qr_content) with open(output_file_name,'w') as f: for qr_content in unique_qr_codes: f.write("{}\n".format(qr_content)) if name == "main": image_folder_path = '/root/Pictures' output_file_name = 'qr_codes_found.txt' main(image_folder_path,output_file_name)合并一下

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

opencv3/C++实现视频读取、视频写入

本文将详细介绍如何使用OpenCV3和C++实现这两个操作,并提供相关的代码示例。 首先,我们来看视频读取的过程。在OpenCV中,视频读取主要通过`VideoCapture`类来完成。`VideoCapture`类提供了一个方便的方法`open()`...
recommend-type

Python OpenCV模块通过调用摄像头并截图保存功能的实现代码

【OpenCV介绍】 ...这段代码会抓取全屏并保存为"screenshot.png"。 请注意,这些功能可能需要特定的权限才能运行,特别是在没有用户交互的情况下。在实际应用中,应确保遵循所有适用的隐私和安全规定。
recommend-type

Python OpenCV 调用摄像头并截图保存功能的实现代码

这段代码首先创建了一个`VideoCapture`对象,它会打开默认的摄像头(编号通常为0)。然后进入一个无限循环,每帧图像都会被读取并显示在名为"capture"的窗口中。当用户按下'q'键时,当前帧将被保存为PNG格式的图片,...
recommend-type

Termux (Android 5.0+).apk.cab

Termux (Android 5.0+).apk.cab
recommend-type

基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip

【资源说明】 基于go、vue开发的堡垒机系统(运维安全审计系统)全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"