将yolov5s的主干网络替换成resnet50,给出代码演示并详细解释
时间: 2024-02-12 20:03:18 浏览: 174
yolov5:将主干网络替换为resnet网络
将YoloV5s的主干网络替换成ResNet50需要做以下几步操作:
1. 下载YoloV5s的代码库
```
git clone https://github.com/ultralytics/yolov5.git
```
2. 下载ResNet50的预训练权重文件
在PyTorch官网上下载ResNet50的预训练权重文件,可以使用以下代码进行下载:
```
import torch.utils.model_zoo as model_zoo
model_url = 'https://download.pytorch.org/models/resnet50-19c8e357.pth'
pretrained_dict = model_zoo.load_url(model_url)
```
3. 修改yolov5s.yaml文件
在yolov5s.yaml文件中,找到backbone关键字,将其改为resnet50,具体代码如下:
```
# MODEL PARAMETERS
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# MODEL ARCHITECTURE
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
backbone:
# Requisite
# 3x 300
# stride 2
# 1/2**5 = 1/32
# out [256, 512, 1024, 2048]
# block args: (filters, kernel_size, stride)
# stage_args: (num_blocks, filters, kernel_size, stride)
# SPP + PAN
# out: [256, 512, 1024, 2048]
# SPP: [5, 9, 13]
# PAN: [128, 256, 512]
# block_args: (filters, kernel_size, stride, groups)
# stage_args: (num_blocks, filters, kernel_size, stride, groups)
# EfficientNet
# out: [40, 80, 160, 1280]
# block_args: (kernel_size, exp_ratio, filters, stride, se_ratio, id_skip)
# ResNet
# out: [64, 256, 512, 1024]
# block_args: (kernel_size, filters, stride, groups)
# ResNet50
# out: [64, 256, 512, 2048]
# block_args: (kernel_size, filters, stride)
# stage_args: (num_blocks, filters)
name: resnet50
# C3 C4 C5 C6 C7
out_channels: [256, 512, 1024, 2048]
frozen_stages: -1 # Frozen stages: -1=all, 0=nothing
```
4. 修改models/yolo.py文件
在yolo.py文件中,找到create_backbone()函数,并将其中的代码替换为以下代码:
```
def create_backbone(self):
if self.backbone_name == 'resnet50':
return ResNet50()
else:
return EfficientNet.from_pretrained(self.backbone_name)
```
5. 修改models/common.py文件
在common.py文件中,找到Conv类,并将其中的代码替换为以下代码:
```
class Conv(nn.Module):
# Standard convolution
def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, bias=True, dilation=1, act=True):
super(Conv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
padding=(kernel_size // 2), groups=groups, bias=bias, dilation=dilation)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.SiLU(inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
```
6. 修改models/yolo.py文件
在yolo.py文件中,找到__init__()函数,并将其中的代码替换为以下代码:
```
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
super(YOLO, self).__init__()
# Model parameters
self.cfg = cfg
self.nc = nc
# Define model
self.backbone_name, self.backbone_args = parse_model_cfg(self.cfg['backbone']) # model name, model args
self.backbone = self.create_backbone()
self.neck_name, self.neck_args = parse_model_cfg(self.cfg['neck']) # model name, model args
self.neck = self.create_neck()
self.head_name, self.head_args = parse_model_cfg(self.cfg['head']) # model name, model args
self.head = self.create_head(self.head_args[0], self.nc)
# Initialize
self._initialize_weights()
# Anchors
self.anchor_grid = self.forward(torch.zeros(1, ch, *self.cfg['input_size']))
# Detect
self.detect = Detect(self.nc, self.anchor_grid)
# Eval mode
self.eval()
# Export mode
self.yolo_layers = [self.detect] # for export
```
7. 运行训练和测试
现在你可以运行训练和测试了,具体操作可以参考yolov5的README文件。
阅读全文