现在有一个save文件夹里面有十一个病人的胃癌二维jpg图像,请在torch环境下使用自编码对病人进行特征提取,然后使用unet对胃进行分割,最后判断病人是否得了癌症给出可视化结果,请给出代码解答
时间: 2024-02-15 15:03:00 浏览: 63
一个简单的残差网络,残差部分采用两层卷积结构,任务是是有监督降噪,环境为torch
好的,下面是一个简单的代码示例,用于实现您所描述的任务:
```python
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from torchvision.utils import save_image
from PIL import Image
import os
# 定义自编码器模型
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.Sigmoid(),
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 定义UNet模型
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.upconv1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(64, 1, kernel_size=1, stride=1, padding=0)
def forward(self, x):
conv1_out = nn.functional.relu(self.conv1(x))
conv2_out = nn.functional.relu(self.conv2(conv1_out))
conv3_out = nn.functional.relu(self.conv3(conv2_out))
conv4_out = nn.functional.relu(self.conv4(conv3_out))
upconv1_out = nn.functional.relu(self.upconv1(conv4_out))
concat1_out = torch.cat((upconv1_out, conv3_out), dim=1)
conv5_out = nn.functional.relu(self.conv5(concat1_out))
upconv2_out = nn.functional.relu(self.upconv2(conv5_out))
concat2_out = torch.cat((upconv2_out, conv2_out), dim=1)
conv6_out = nn.functional.relu(self.conv6(concat2_out))
upconv3_out = nn.functional.relu(self.upconv3(conv6_out))
concat3_out = torch.cat((upconv3_out, conv1_out), dim=1)
conv7_out = self.conv7(concat3_out)
return nn.functional.sigmoid(conv7_out)
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, root, transform=None):
self.root = root
self.transform = transform
self.image_files = os.listdir(root)
def __getitem__(self, index):
image_path = os.path.join(self.root, self.image_files[index])
image = Image.open(image_path)
if self.transform:
image = self.transform(image)
return image
def __len__(self):
return len(self.image_files)
# 定义训练参数
num_epochs = 10
batch_size = 10
learning_rate = 0.001
# 加载和预处理数据
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
])
dataset = CustomDataset('save', transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
autoencoder = Autoencoder()
unet = UNet()
criterion = nn.BCELoss()
autoencoder_optimizer = optim.Adam(autoencoder.parameters(), lr=learning_rate)
unet_optimizer = optim.Adam(unet.parameters(), lr=learning_rate)
# 训练自编码器和UNet
for epoch in range(num_epochs):
for i, images in enumerate(dataloader):
# 训练自编码器
autoencoder_optimizer.zero_grad()
decoded_images = autoencoder(images)
autoencoder_loss = criterion(decoded_images, images)
autoencoder_loss.backward()
autoencoder_optimizer.step()
# 训练UNet
unet_optimizer.zero_grad()
segmentations = unet(images)
unet_loss = criterion(segmentations, ground_truth)
unet_loss.backward()
unet_optimizer.step()
# 打印损失
print('Epoch [{}/{}], Step [{}/{}], Autoencoder Loss: {:.4f}, UNet Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(dataloader), autoencoder_loss.item(), unet_loss.item()))
# 可视化结果
sample_images = next(iter(dataloader))
decoded_images = autoencoder(sample_images)
segmentations = unet(sample_images)
save_image(sample_images, 'original_images.png')
save_image(decoded_images, 'decoded_images.png')
save_image(segmentations, 'segmentations.png')
```
请注意,这只是一个简单的示例代码,你需要按照你的实际情况进行修改和调整。例如,你需要定义一个函数来判断病人是否患有癌症,并将结果可视化。此外,你需要为UNet提供一个ground truth图像来计算损失。
阅读全文