theano实现使用自适应的 Dropout 方法来动态调整VGG网络的 Dropout 概率值
时间: 2023-06-18 19:03:11 浏览: 165
VGG16-In-Keras:在Keras中实现VGG16架构
自适应 Dropout 方法可以根据网络的不同层次和输入数据的特征,动态调整 Dropout 概率值,从而提高模型的泛化能力。在 Theano 框架中,可以通过以下代码实现使用自适应 Dropout 方法来动态调整 VGG 网络的 Dropout 概率值:
```python
import theano
import theano.tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams
def dropout(input, p, rng):
srng = MRG_RandomStreams(rng.randint(999999))
mask = srng.binomial(n=1, p=1-p, size=input.shape, dtype=theano.config.floatX)
output = input * mask
return output
def adaptive_dropout(input, p, rng):
p = 0.5 * p
if input.ndim == 4:
input_shape = input.shape
input = T.flatten(input, 2)
mean = T.mean(input, axis=1, keepdims=True)
var = T.var(input, axis=1, keepdims=True)
alpha = theano.shared(np.ones((input_shape[1], 1), dtype=theano.config.floatX))
rho = theano.shared(np.ones((input_shape[1], 1), dtype=theano.config.floatX))
alpha_new = T.nnet.sigmoid(T.dot(alpha, T.log(1+T.exp(rho*(var-mean**2)/mean**2))))
p_new = 1 - alpha_new
output = dropout(input, p_new, rng)
output_shape = (input_shape[0], input_shape[1], input_shape[2], input_shape[3])
output = T.reshape(output, output_shape)
return output
else:
return dropout(input, p, rng)
```
其中,`dropout` 函数实现了标准的 Dropout 方法;`adaptive_dropout` 函数实现了自适应 Dropout 方法。在自适应 Dropout 方法中,首先将 Dropout 概率值减半,然后计算输入数据在每个通道上的均值和方差,并通过一个神经网络计算每个通道的 `alpha` 值。最后,根据 `alpha` 值计算新的 Dropout 概率值,然后应用 Dropout。
在 VGG 网络中使用自适应 Dropout 方法,可以在每个卷积层和全连接层后添加一个自适应 Dropout 层,如下所示:
```python
import numpy as np
import lasagne
def build_vgg(input_var=None):
network = lasagne.layers.InputLayer(shape=(None, 3, 224, 224), input_var=input_var)
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.3, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.3, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=256, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Conv2DLayer(network, num_filters=512, filter_size=(3, 3), pad=1, flip_filters=False)
network = adaptive_dropout(network, p=0.4, rng=np.random.RandomState(1234))
network = lasagne.layers.Pool2DLayer(network, pool_size=(2, 2), mode='max')
network = lasagne.layers.DenseLayer(network, num_units=4096)
network = adaptive_dropout(network, p=0.5, rng=np.random.RandomState(1234))
network = lasagne.layers.DenseLayer(network, num_units=4096)
network = adaptive_dropout(network, p=0.5, rng=np.random.RandomState(1234))
network = lasagne.layers.DenseLayer(network, num_units=1000, nonlinearity=lasagne.nonlinearities.softmax)
return network
```
其中,`adaptive_dropout` 函数的参数 `p` 表示初始的 Dropout 概率值,`rng` 表示随机数生成器。在 VGG 网络中,每个卷积层和全连接层后添加一个自适应 Dropout 层,并根据不同层次的特征动态调整 Dropout 概率值。这样可以提高模型的泛化能力,防止过拟合。
阅读全文