def Gamma(): img_path = "result" save_path = "Gammaresult" img_names = os.listdir(img_path) for img_name in img_names: img = os.path.join(img_path, img_name) img = imageio.imread(img) # 伽马校正 img2 = GammaCorrection(img) dir_name = ''.join(random.sample(string.ascii_letters + string.digits, 8)) cv2.imwrite(os.path.join(save_path, dir_name + '.jpg'), img2) cv2.imwrite(os.path.join(save_path, img_name), img)
时间: 2024-03-18 19:43:30 浏览: 57
这是一个用于给一个文件夹中的所有图片进行伽马校正的函数。函数首先需要指定输入图片所在的文件夹路径和输出图片所要保存的文件夹路径。然后获取输入文件夹中所有图片的文件名,对于每个文件名,读取对应的图片。接着,使用 GammaCorrection 函数对该图片进行伽马校正,使用随机生成的文件名将校正后的图片保存到输出文件夹中。最后,将原始图片也保存到输出文件夹中,但不进行伽马校正。
相关问题
class CardPredictor: def __del__(self): self.save_traindata() def train_svm(self): # 识别英文字母和数字 self.model = SVM(C=1, gamma=0.5) # 识别中文 self.modelchinese = SVM(C=1, gamma=0.5) if os.path.exists("svm.dat"): self.model.load("svm.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\chars2"): if len(os.path.basename(root)) > 1: continue root_int = ord(os.path.basename(root)) for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(root_int) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.model.train(chars_train, chars_label) if os.path.exists("svmchinese.dat"): self.modelchinese.load("svmchinese.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\charsChinese"): if not os.path.basename(root).startswith("zh_"): continue pinyin = os.path.basename(root) index = provinces.index(pinyin) + PROVINCE_START + 1 # 1是拼音对应的汉字 for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(index) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.modelchinese.train(chars_train, chars_label)
这段代码实现了一个卡牌识别器,使用 SVM 算法来识别卡牌上的数字、英文字母和汉字。它将训练数据从文件中读取,对于数字和英文字母,训练数据位于 "train\\chars2" 文件夹中;对于汉字,训练数据位于 "train\\charsChinese" 文件夹中。训练数据中的每张图片都经过了去倾斜、HOG 特征提取等预处理操作,最后使用 SVM 算法进行训练。训练好的模型可以保存到文件中以便于之后的使用。当程序结束时,会自动保存训练数据。
import os import cv2 import numpy as np def gabor_kernel(ksize, sigma, gamma, lamda, alpha, psi): """ reference https://en.wikipedia.org/wiki/Gabor_filter """ sigma_x = sigma sigma_y = sigma / gamma ymax = xmax = ksize // 2 # 9//2 xmin, ymin = -xmax, -ymax # print("xmin, ymin,xmin, ymin",xmin, ymin,ymax ,xmax) # X(第一个参数,横轴)的每一列一样, Y(第二个参数,纵轴)的每一行都一样 (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # 生成网格点坐标矩阵 # print("y\n",y) # print("x\n",x) x_alpha = x * np.cos(alpha) + y * np.sin(alpha) y_alpha = -x * np.sin(alpha) + y * np.cos(alpha) print("x_alpha[0][0]", x_alpha[0][0], y_alpha[0][0]) exponent = np.exp(-.5 * (x_alpha ** 2 / sigma_x ** 2 + y_alpha ** 2 / sigma_y ** 2)) # print(exponent[0][0]) # print(x[0],y[0]) kernel = exponent * np.cos(2 * np.pi / lamda * x_alpha + psi) print(kernel) # print(kernel[0][0]) return kernel def gabor_filter(gray_img, ksize, sigma, gamma, lamda, psi): filters = [] for alpha in np.arange(0, np.pi, np.pi / 4): print("alpha", alpha) kern = gabor_kernel(ksize=ksize, sigma=sigma, gamma=gamma, lamda=lamda, alpha=alpha, psi=psi) filters.append(kern) gabor_img = np.zeros(gray_img.shape, dtype=np.uint8) i = 0 for kern in filters: fimg = cv2.filter2D(gray_img, ddepth=cv2.CV_8U, kernel=kern) gabor_img = cv2.max(gabor_img, fimg) i += 1 p = 1.25 gabor_img = (gabor_img - np.min(gabor_img, axis=None)) ** p _max = np.max(gabor_img, axis=None) gabor_img = gabor_img / _max print(gabor_img) gabor_img = gabor_img * 255 return gabor_img.astype(dtype=np.uint8) def main(): dir_path = '7/' files = os.listdir(dir_path) for i in files: print(i) img = cv2.imread(dir_path + "/" + i) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gabor_img = gabor_filter(img_gray, ksize=9, sigma=1, gamma=0.5, lamda=5, psi=-np.pi / 2) Img_Name = "5/gabor/" + str(i) cv2.imwrite(Img_Name, gabor_img) main()
这段代码定义了一个函数,用于生成一个Gabor滤波器核(Gabor kernel)。其中,使用了Python中的三个模块,分别是os、cv2和numpy。函数的输入参数为ksize、sigma、gamma、lamda、alpha和psi,分别表示核的大小、标准差、长宽比、波长、方向以及相位偏移。函数的实现采用了Gabor滤波器的数学公式,使用了numpy中的数组操作,最终生成了一个Gabor核。
阅读全文