def Gamma(): img_path = "result" save_path = "Gammaresult" img_names = os.listdir(img_path) for img_name in img_names: img = os.path.join(img_path, img_name) img = imageio.imread(img) # 伽马校正 img2 = GammaCorrection(img) dir_name = ''.join(random.sample(string.ascii_letters + string.digits, 8)) cv2.imwrite(os.path.join(save_path, dir_name + '.jpg'), img2) cv2.imwrite(os.path.join(save_path, img_name), img)

时间: 2024-03-18 11:43:30 浏览: 20
这是一个用于给一个文件夹中的所有图片进行伽马校正的函数。函数首先需要指定输入图片所在的文件夹路径和输出图片所要保存的文件夹路径。然后获取输入文件夹中所有图片的文件名,对于每个文件名,读取对应的图片。接着,使用 GammaCorrection 函数对该图片进行伽马校正,使用随机生成的文件名将校正后的图片保存到输出文件夹中。最后,将原始图片也保存到输出文件夹中,但不进行伽马校正。
相关问题

class CardPredictor: def __del__(self): self.save_traindata() def train_svm(self): # 识别英文字母和数字 self.model = SVM(C=1, gamma=0.5) # 识别中文 self.modelchinese = SVM(C=1, gamma=0.5) if os.path.exists("svm.dat"): self.model.load("svm.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\chars2"): if len(os.path.basename(root)) > 1: continue root_int = ord(os.path.basename(root)) for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(root_int) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.model.train(chars_train, chars_label) if os.path.exists("svmchinese.dat"): self.modelchinese.load("svmchinese.dat") else: chars_train = [] chars_label = [] for root, dirs, files in os.walk("train\\charsChinese"): if not os.path.basename(root).startswith("zh_"): continue pinyin = os.path.basename(root) index = provinces.index(pinyin) + PROVINCE_START + 1 # 1是拼音对应的汉字 for filename in files: filepath = os.path.join(root, filename) digit_img = cv2.imread(filepath) digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY) chars_train.append(digit_img) chars_label.append(index) chars_train = list(map(deskew, chars_train)) chars_train = preprocess_hog(chars_train) chars_label = np.array(chars_label) self.modelchinese.train(chars_train, chars_label)

这段代码实现了一个卡牌识别器,使用 SVM 算法来识别卡牌上的数字、英文字母和汉字。它将训练数据从文件中读取,对于数字和英文字母,训练数据位于 "train\\chars2" 文件夹中;对于汉字,训练数据位于 "train\\charsChinese" 文件夹中。训练数据中的每张图片都经过了去倾斜、HOG 特征提取等预处理操作,最后使用 SVM 算法进行训练。训练好的模型可以保存到文件中以便于之后的使用。当程序结束时,会自动保存训练数据。

class DQNAgent: def __init__(self, input_dim, output_dim, learning_rate=0.001, pretrained=True): self.network = DQN(input_dim, output_dim, pretrained=pretrained) self.target_network = DQN(input_dim, output_dim, pretrained=pretrained) self.buffer = ReplayBuffer(1000) self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate) self.criteria = nn.MSELoss() self.gamma = 0.9 self.epsilon = 0 self.epsilon_decay = 0.999 self.epsilon_min = 0.05 self.output_dim = output_dim

这是一个基于DQN算法的智能体(Agent)类。它的作用是实现一个DQN智能体,用于解决强化学习中的决策问题。主要有以下几个成员: 1. `__init__(self, input_dim, output_dim, learning_rate=0.001, pretrained=True)`:初始化方法,传入输入维度(input_dim)、输出维度(output_dim)、学习率(learning_rate)和是否使用预训练(pretrained)模型。在初始化过程中,它创建了两个DQN网络实例:self.network和self.target_network,以及一个经验回放缓冲区实例self.buffer。同时,它还定义了优化器(self.optimizer)和损失函数(self.criteria)。 2. `self.network = DQN(input_dim, output_dim, pretrained=pretrained)`:创建一个DQN网络实例,用于近似值函数的估计。该网络将输入维度(input_dim)和输出维度(output_dim)作为参数传入,并根据预训练(pretrained)标志来初始化模型参数。 3. `self.target_network = DQN(input_dim, output_dim, pretrained=pretrained)`:创建一个目标网络实例,用于计算目标Q值。与self.network类似,它也接受输入维度(input_dim)和输出维度(output_dim)作为参数,并根据预训练(pretrained)标志来初始化模型参数。 4. `self.buffer = ReplayBuffer(1000)`:创建一个经验回放缓冲区实例,用于存储智能体与环境之间的交互数据。它的容量为1000,可以根据需要进行调整。 5. `self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate)`:创建一个Adam优化器实例,用于更新网络参数。它的参数是self.network的可学习参数,学习率为learning_rate。 6. `self.criteria = nn.MSELoss()`:创建一个均方误差损失函数实例,用于计算值函数的误差。它将用于计算网络输出与目标Q值之间的差距。 7. `self.gamma = 0.9`:折扣因子,用于计算未来奖励的折现值。 8. `self.epsilon = 0`:ε-greedy策略中的ε值,用于探索与利用的权衡。 9. `self.epsilon_decay = 0.999`:ε值的衰减率,用于逐渐减小探索的概率。 10. `self.epsilon_min = 0.05`:ε值的最小值,探索的概率不会低于这个值。 11. `self.output_dim = output_dim`:输出维度。 该类将DQN算法的各个组件进行了封装,并提供了一些方法来实现智能体的训练和决策过程。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

id=1 and 1=3 union select 1,group_concat(uismkhbuow_name) from xtfrfdxcsk.uismkhbuow ;哪错了

这是一个 SQL 注入攻击的语句,其中 `1=3` 是永远不成立的条件,所以整个语句都是错误的。这个语句的目的是通过注入一段查询语句,来获取 `xtfrfdxcsk.uismkhbuow` 表中的数据。但是这样的操作是非法的,不仅会破坏数据库的完整性和安全性,还可能触犯法律。建议不要尝试进行 SQL 注入攻击。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩