loss = 0.5 / X2.shape[0] * (R ** 2).sum() G_loss = - 1.0 / X.shape[0] * X2.T @ R
时间: 2024-05-31 16:14:22 浏览: 76
这段代码看起来像是计算神经网络中的损失函数和梯度,其中X2是模型的预测结果,R是真实标签,loss计算的是均方误差(MSE)损失函数,G_loss计算的是MSE损失函数对模型参数的梯度。具体来说,loss计算的是预测值与真实值之间的差距,而G_loss计算的是这个差距对模型参数的影响,用于更新模型参数以使得模型更加准确地预测输出。
相关问题
#encoding=utf8 import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import os if os.path.exists('/data/workspace/course/step3/cnn.pkl'): os.remove('/data/workspace/course/step3/cnn.pkl') #加载数据 train_data = torchvision.datasets.MNIST( root='/data/workspace/course/step3/mnist', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to download=False, ) #取6000个样本为训练集 train_data_tiny = [] for i in range(6000): train_data_tiny.append(train_data[i]) train_data = train_data_tiny #********* Begin *********# #********* End *********# #保存模型 torch.save(cnn.state_dict(), '/data/workspace/course/step3/cnn.pkl') 帮我补全begin-end区域代码
# 定义卷积神经网络模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # input shape (1, 28, 28)
nn.Conv2d(
in_channels=1, # input height
out_channels=16, # n_filters
kernel_size=5, # filter size
stride=1, # filter movement/step
padding=2,
), # output shape (16, 28, 28)
nn.ReLU(), # activation
nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14)
)
self.conv2 = nn.Sequential( # input shape (16, 14, 14)
nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)
nn.ReLU(), # activation
nn.MaxPool2d(2), # output shape (32, 7, 7)
)
self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
output = self.out(x)
return output
# 实例化卷积神经网络模型
cnn = CNN()
# 定义损失函数和优化器
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
# 定义数据集和数据加载器
train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# 训练模型
for epoch in range(1):
for step, (x, y) in enumerate(train_loader):
b_x = Variable(x) # batch x
b_y = Variable(y) # batch y
output = cnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 100 == 0:
test_output = cnn(torch.unsqueeze(train_data_tiny[0][0], dim=0))
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = sum(pred_y == train_data_tiny[0][1]) / float(train_data_tiny[0][1].size)
print('Epoch:', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
# 保存模型
torch.save(cnn.state_dict(), '/data/workspace/course/step3/cnn.pkl')
现已用pytorch代码写好了VAE的两个编码器:1个3层的MLP对形状为(16968,12,307,2)的v_w数据集进行速度和星期特征的相关性计算,另一个是2层的GAT对形状为(16968,12,307,2)的v_d数据集进行速度和度特征的相关性计算。分别编码后送入进行拼接计算隐变量均值和方差,再将隐变量计算送入解码器得到recon_x。最后将这个recon_x和真实的x送入2维卷积构成的GRU模块生成最终的预测值。上述模块均已构建好,请你按照这个思路,帮我用pytorch定义一个def epoch_train_with_batch(train_flow_input, train_target, batch_size):,最终返回return sum(train_loss)/len(train_loss),sum(train_loss_vae)/len(train_loss_vae)
好的,根据你的描述,我尝试编写了一个`epoch_train_with_batch`函数,如下所示:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pack_padded_sequence
import numpy as np
# 定义VAE编码器
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class GAT(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(GAT, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class VAE(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(VAE, self).__init__()
self.encoder1 = MLP(input_size[2]*input_size[3], hidden_size, output_size)
self.encoder2 = GAT(input_size[2]*input_size[3], hidden_size, output_size)
self.fc1 = nn.Linear(2*output_size, output_size)
self.fc21 = nn.Linear(output_size, output_size)
self.fc22 = nn.Linear(output_size, output_size)
self.fc3 = nn.Linear(output_size, 2*output_size)
self.decoder = nn.Linear(output_size, input_size[2]*input_size[3])
def encode(self, x1, x2):
h1 = self.encoder1(x1.view(-1, x1.shape[2]*x1.shape[3]))
h2 = self.encoder2(x2.view(-1, x2.shape[2]*x2.shape[3]))
h = torch.cat([h1, h2], dim=1)
h = torch.relu(self.fc1(h))
return self.fc21(h), self.fc22(h)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h = torch.relu(self.fc3(z))
h = self.decoder(h)
return h.view(-1, input_size[2], input_size[3])
def forward(self, x1, x2):
mu, logvar = self.encode(x1, x2)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# 定义GRU模块
class GRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(GRU, self).__init__()
self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.fc1 = nn.Linear(hidden_size, 2)
self.conv = nn.Conv2d(1, 1, (2,2))
def forward(self, x):
h, _ = self.gru(x) # h shape: (batch_size, seq_len, hidden_size)
h = self.fc1(h[:, -1, :]) # 取最后一个时间步的输出
h = h.unsqueeze(1) # h shape: (batch_size, 1, 2)
h = self.conv(h) # h shape: (batch_size, 1, 1, 1)
return h.view(-1)
def epoch_train_with_batch(train_flow_input, train_target, batch_size):
# 超参数
hidden_size = 128
latent_dim = 32
num_epochs = 10
learning_rate = 0.001
# 数据处理
train_dataset = TensorDataset(torch.Tensor(train_flow_input), torch.Tensor(train_target))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 模型定义
model = VAE(train_flow_input.shape, hidden_size, latent_dim)
gru_model = GRU(latent_dim, 64, 2)
# 损失函数和优化器
criterion_vae = nn.MSELoss()
criterion_gru = nn.MSELoss()
optimizer = optim.Adam(list(model.parameters()) + list(gru_model.parameters()), lr=learning_rate)
# 训练循环
train_loss = []
train_loss_vae = []
for epoch in range(num_epochs):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
x1 = x[:, :, :, 0] # 取速度特征
x2 = x[:, :, :, 1] # 取星期特征
recon_x, mu, logvar = model(x1, x2)
loss_vae = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss_vae /= batch_size * train_flow_input.shape[1]
loss = criterion_vae(recon_x, x1) + loss_vae
loss.backward()
optimizer.step()
train_loss.append(loss.item())
train_loss_vae.append(loss_vae.item())
# 计算GRU模型的损失
z = gru_model(mu.unsqueeze(0))
loss_gru = criterion_gru(z, y)
optimizer.zero_grad()
loss_gru.backward()
optimizer.step()
return sum(train_loss)/len(train_loss), sum(train_loss_vae)/len(train_loss_vae)
```
这段代码定义了一个`VAE`模型和一个`GRU`模型,分别用于特征编码和序列预测。训练循环中,首先对于每个batch,计算VAE模型的损失和梯度,并进行反向传播和优化;然后计算GRU模型的损失和梯度,并进行反向传播和优化。最后返回训练损失和VAE损失的均值。请注意,这段代码可能需要根据具体情况进行修改。
阅读全文