torch 实现unet 医学分割代码
时间: 2023-08-27 14:04:14 浏览: 180
以下是使用PyTorch实现UNet医学图像分割的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, in_channels=1, out_channels=1, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 定义编码器
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# 定义解码器
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# 编码器
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
# 中间层
x = self.bottleneck(x)
# 解码器
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = transforms.CenterCrop([skip_connection.shape[2], skip_connection.shape[3]])(x)
x = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](x)
return self.final_conv(x)
# 加载数据集
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
train_dataset = ImageFolder("data/train", transform=train_transforms)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
# 定义模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet().to(device)
# 定义损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 测试模型
test_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
test_dataset = ImageFolder("data/test", transform=test_transforms)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
binary_output = torch.sigmoid(output)
# 计算预测结果的准确率、召回率、F1值等指标
```
以上是使用PyTorch实现UNet医学图像分割的代码示例,其中包含了数据预处理、模型定义、损失函数和优化器的定义、模型训练和测试等步骤。需要根据实际情况进行修改和调整。
阅读全文