resnet18实现图片分类
时间: 2023-09-11 14:12:15 浏览: 106
好的,针对您的问题,我可以提供以下的代码实现:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# 加载预训练的ResNet18模型
resnet18 = models.resnet18(pretrained=True)
# 将ResNet18的最后一层替换为全连接层,输出类别数为10(示例)
num_classes = 10
resnet18.fc = nn.Linear(resnet18.fc.in_features, num_classes)
# 设置训练参数
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(resnet18.parameters(), lr=0.001, momentum=0.9)
# 加载数据集并进行训练
# ...
# 在测试集上进行测试
# ...
```
上述代码中,我们使用了PyTorch中的`resnet18`模型,并将其最后一层替换为一个全连接层,该全连接层的输出类别数为10(示例)。然后,我们设置了训练参数(损失函数、优化器等),并加载数据集进行训练。最后,在测试集上进行测试。
相关问题
resnet实现图片分类python
### 回答1:
ResNet是一种深度卷积神经网络,用于图像分类任务。它是由微软研究院提出的,可以通过Python实现。在Python中,可以使用TensorFlow或PyTorch等深度学习框架来实现ResNet模型。通过使用这些框架,可以轻松地加载和训练ResNet模型,以实现图像分类任务。同时,还可以使用预训练的ResNet模型来进行迁移学习,以加快模型训练的速度和提高模型的准确性。
### 回答2:
ResNet是残差神经网络的简称,是在2015年ImageNet比赛中获得了第一名的深度神经网络模型。ResNet的核心思想是引入了残差模块,通过这些模块可以将网络深度增加到152层以上。ResNet在准确率和训练速度上都表现出色,因此被广泛应用于计算机视觉领域。
在Python中,可以使用PyTorch框架实现ResNet进行图片分类。下面简单介绍一下实现过程。
首先需要导入相关的库,并加载数据集。在这里可以使用torchvision提供的CIFAR-10数据集,也可以使用自己的数据集。加载数据集代码如下:
```python
import torch
import torchvision
import torchvision.transforms as transforms
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
```
接下来需要定义ResNet模型的结构。这里定义了一个ResNet18的模型结构,也可以根据需求改变模型结构。定义模型代码如下:
```python
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
```
执行以下代码即可训练ResNet模型进行图片分类:
```python
import torch.optim as optim
net = ResNet18()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
for epoch in range(200):
net.train()
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
net.eval()
total = 0
correct = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Epoch: %d, Accuracy: %d %%' % (epoch+1, 100 * correct / total))
```
以上就是使用PyTorch框架实现ResNet进行图片分类的完整代码和流程。通过对数据集的加载、模型结构的定义和模型训练的执行,我们可以得到一个能够对图像进行分类的深度神经网络模型。在实际应用中,可以根据需求适当改变模型结构和训练参数,以得到更好的模型准确率和性能表现。
### 回答3:
ResNet是一个深层学习模型,用于图像分类任务。它通过跨层连接(shortcut connections)和残差(residual)块来解决梯度消失的问题,可以训练非常深的网络而不会出现精度下降的问题。它是2015年ImageNet图像分类比赛的冠军模型,其基本模型ResNet-50在ImageNet上可以达到约75%的Top-1准确率。
在代码实现上,可以通过Python的深度学习框架PyTorch来实现ResNet模型的图像分类。首先需要导入必要的库,包括PyTorch、torchvision等:
```python
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
```
然后,可以使用torchvision中提供的ImageFolder功能来读取图像数据集,如下所示:
```python
transform_train = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
trainset = torchvision.datasets.CIFAR10(
root="./data", train=True, download=True, transform=transform_train
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2
)
testset = torchvision.datasets.CIFAR10(
root="./data", train=False, download=True, transform=transform_test
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=128, shuffle=False, num_workers=2
)
classes = ("plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck")
```
定义模型的代码可以通过继承nn.Module来实现,如下所示:
```python
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes,
planes,
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
```
接下来是训练函数的代码实现,包括损失函数、优化器等:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = ResNet(BasicBlock, [2, 2, 2, 2]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[150, 250], gamma=0.1
)
def train(epoch):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % 50 == 0:
print(
"Epoch: [{}/{}][{}/{}]\t Loss: {:.3f} | Acc: {:.3f}%".format(
epoch,
num_epochs,
batch_idx,
len(trainloader),
train_loss / (batch_idx + 1),
100.0 * correct / total,
)
)
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx % 50 == 0:
print(
"Epoch: [{}/{}][{}/{}]\t Loss: {:.3f} | Acc: {:.3f}%".format(
epoch,
num_epochs,
batch_idx,
len(testloader),
test_loss / (batch_idx + 1),
100.0 * correct / total,
)
)
acc = 100.0 * correct / total
if acc > best_acc:
print("Saving..")
state = {
"net": net.state_dict(),
"acc": acc,
"epoch": epoch,
}
if not os.path.isdir("checkpoint"):
os.mkdir("checkpoint")
torch.save(state, "./checkpoint/resnet.pth")
best_acc = acc
num_epochs = 350
best_acc = 0
for epoch in range(num_epochs):
scheduler.step()
train(epoch)
test(epoch)
```
通过上述步骤完成代码编写后,就可以训练ResNet模型实现图像分类任务了。在训练的过程中需要注意调整学习率等超参数来提高模型性能。
tensorflow实现resnet图片分类有数据集
当使用TensorFlow来实现ResNet图片分类时,首先需要准备一个适合的数据集。这可以是来自ImageNet数据库的已标记的图片数据集,也可以是自己收集并标记的图片数据集。
接下来,需要导入TensorFlow和ResNet模型的库,并加载预训练好的ResNet模型。然后,使用TensorFlow的数据预处理工具来处理图片数据集,包括图像的缩放、裁剪和归一化等操作。
在模型搭建阶段,可以根据具体的需求选择合适的ResNet模型,如ResNet-18、ResNet-34、ResNet-50等。然后根据数据集的类别数量进行微调和调整。
接着,将数据集划分为训练集、验证集和测试集,然后使用TensorFlow的模型训练工具来训练ResNet模型。在训练过程中,可以调整学习率、损失函数、优化器等参数,以获得更好的模型性能。
在模型训练完成后,需要使用验证集来评估模型的性能,包括准确率、精确率、召回率等指标。最后,使用测试集来测试模型的泛化能力,以确保模型的有效性。
总之,通过以上步骤,就可以使用TensorFlow实现ResNet图片分类,并且基于相应的数据集对模型进行训练和评估,以获得准确性能良好的分类模型。
阅读全文