用matlab写一段CNN-LSTM-Attention模型的代码
时间: 2024-01-13 10:03:05 浏览: 79
Matlab实现CNN-LSTM-Mutilhead-Attention卷积长短期网络多头注意力机制分类预测(完整源码和数据)
5星 · 资源好评率100%
以下是一个简单的CNN-LSTM-Attention模型的matlab代码:
```matlab
% 定义输入维度
inputSize = [28 28 1];
% 定义CNN层
layers = [
imageInputLayer(inputSize)
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
];
% 定义LSTM层
numHiddenUnits = 64;
lstmLayer = lstmLayer(numHiddenUnits,'OutputMode','last');
% 定义Attention层
attentionLayer = attentionLayer(numHiddenUnits);
% 定义输出层
outputLayer = fullyConnectedLayer(10);
finalLayers = [
lstmLayer
attentionLayer
outputLayer
softmaxLayer
classificationLayer
];
% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-3, ...
'MiniBatchSize',128, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
% 训练模型
net = trainNetwork(imdsTrain,layers,finalLayers,options);
```
请注意,这只是一个简单的示例,您需要根据您的数据和任务进行调整。此外,您需要正确定义并实现CNN层,LSTM层和Attention层。
阅读全文