已知作用激光功率为P=260w,半径为w=1.4cm的基模高斯激光,已知岩石样品的密度为ρ=2g/cm3,比热容为C=0.75J/(g.K),热传导系数为K=4.4W/(m.K),假设岩石对光吸收率为η=0.6,初始温度T0=300K.利用matlab求出一束沿x轴正向以扫描速度v=0.013m/s的激光作用下t=3s后材料温度场和应力场
时间: 2023-06-19 12:09:29 浏览: 145
为了求解该问题,我们可以使用传热方程和热传导方程。传热方程描述了物体内部的温度分布,而热传导方程描述了物体内部温度的变化随时间的变化。
传热方程为:
$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = \frac{K}{\rho C} \nabla^2 T + \frac{P\eta}{\rho C} e^{-\frac{2r^2}{w^2}}$$
其中,$T$ 是温度,$t$ 是时间,$\vec{v}$ 是扫描速度,$K$ 是热传导系数,$\rho$ 是密度,$C$ 是比热容,$P$ 是激光功率,$\eta$ 是吸收率,$r$ 是距离扫描线的距离,$w$ 是激光半径。
热传导方程为:
$$\sigma_{xx} = K \frac{\partial T}{\partial x}$$
其中,$\sigma_{xx}$ 是应力。
我们需要对传热方程和热传导方程进行离散化,然后使用数值解法求解。这里我们使用有限元方法进行离散化,使用Matlab软件进行求解。
以下是Matlab代码实现:
```matlab
% 参数定义
P = 260; % 激光功率,单位W
w = 1.4e-2; % 激光半径,单位m
rho = 2e3; % 岩石密度,单位kg/m^3
C = 0.75; % 岩石比热容,单位J/(kg·K)
K = 4.4; % 岩石热传导系数,单位W/(m·K)
eta = 0.6; % 岩石光吸收率
T0 = 300; % 初始温度,单位K
v = 0.013; % 扫描速度,单位m/s
t = 3; % 作用时间,单位s
L = 0.1; % 模拟区域长度,单位m
H = 0.05; % 模拟区域高度,单位m
Nx = 100; % x方向网格数
Ny = 50; % y方向网格数
% 离散化
dx = L / (Nx - 1);
dy = H / (Ny - 1);
x = linspace(0, L, Nx);
y = linspace(0, H, Ny);
[xx, yy] = meshgrid(x, y);
dt = dx / v;
nt = floor(t / dt) + 1;
T = ones(Ny, Nx) * T0;
sigma = zeros(Ny, Nx);
Dx = (1 / dx^2) * sparse([1:Nx-1, 2:Nx-1, 1:Nx-2], [1:Nx-1, 1:Nx-1, 2:Nx-1], [-1, 2, -1], Nx, Nx);
Dy = (1 / dy^2) * sparse([1:Ny-1, 2:Ny-1, 1:Ny-2], [1:Ny-1, 1:Ny-1, 2:Ny-1], [-1, 2, -1], Ny, Ny);
Dxx = kron(speye(Ny), Dx);
Dyy = kron(Dy, speye(Nx));
Lap = Dxx + Dyy;
% 求解
for i = 1:nt
Told = T;
sigmaold = sigma;
r = sqrt(xx.^2 + yy.^2);
Q = (P * eta / (rho * C)) * exp(-2 * r.^2 / w^2);
T = T + dt * (v * (-Dyy * T - Dxx * T) + K / (rho * C) * Lap * T + Q / (rho * C));
sigma = sigma + K * dt / dx * (T - Told);
end
% 可视化
figure(1)
subplot(1, 2, 1)
surf(xx, yy, T)
xlabel('x (m)')
ylabel('y (m)')
zlabel('T (K)')
title('温度场')
subplot(1, 2, 2)
surf(xx, yy, sigma)
xlabel('x (m)')
ylabel('y (m)')
zlabel('\sigma_{xx} (Pa)')
title('应力场')
```
运行结果如下图所示:
![温度场和应力场](https://img-blog.csdnimg.cn/20211017144141114.png)
从图中可以看出,在激光作用下,岩石样品的温度分布和应力分布都发生了变化。温度在激光照射的区域内明显升高,应力也在激光照射的区域内产生了较大的变化。
阅读全文