//格式化输出 val result:StringBuilder = new StringBuilder() result.append("时间:").append(new Timestamp(timestamp - 1)).append("\n") for (i <- sortedUrlViews.indices){ val currentUrlView = sortedUrlViews(i) result.append("NO").append(i+1).append(":") .append("URL=").append(currentUrlView.url) .append("访问量=").append(currentUrlView.count).append("\n") } result.append("=====================") Thread.sleep(1000) out.collect(result.toString()) } }

时间: 2024-04-28 14:22:35 浏览: 244
这是一段Scala代码,是对前面提到的自定义的处理函数TopNHotUrls进行输出的部分。具体来说,代码通过StringBuilder来格式化输出TopNHotUrls函数的结果,包括时间、URL和访问量,并将其输出到下游节点。 在具体实现中,使用了append方法将时间、URL和访问量添加到StringBuilder对象中,并使用Thread.sleep方法来模拟1秒钟的输出延迟。最后,调用out.collect方法将StringBuilder对象中的结果输出到下游节点。 需要注意的是,这段代码是在onTimer方法中进行输出的,也就是在时间窗口结束后进行输出。因此,它只会输出窗口内的数据,而不是所有的数据。如果需要输出所有的数据,可以在processElement方法中进行输出。
相关问题

override fun fillCompletionVariants(parameters: CompletionParameters, result: CompletionResultSet) { // 获取当前文件 val file: PsiFile = parameters.originalFile // 获取当前光标位置 val offset: Int = parameters.offset // 获取当前光标所在的元素 val element: PsiElement? = file.findElementAt(offset) // 如果当前光标所在的元素是字符串字面量 if (element is PsiLiteralExpression && element.value is String) { val text: String = element.value as String val prefix: String = text.substring(0, offset - element.textOffset) // 异步添加代码补全项 val future: CompletableFuture<List<String>> = CompletableFuture.supplyAsync { // 在这里使用异步网络搜索预测代码 searchPredictions(prefix) } // 当异步操作完成后,将结果添加到结果集中 future.thenAccept { predictions -> predictions.forEach { prediction -> result.addElement(LookupElementBuilder.create("$prefix $prediction")) } } } } // 使用异步网络搜索预测代码 private fun searchPredictions(prefix: String): List<String> { // 在这里实现异步网络搜索预测代码的逻辑 // 返回预测的代码列表 return listOf("Hello", "World") }这段代码转换成java代码

Here is the Java code equivalent of the given Kotlin code: ``` @Override public void fillCompletionVariants(@NotNull CompletionParameters parameters, @NotNull CompletionResultSet result) { // Get the current file PsiFile file = parameters.getOriginalFile(); // Get the current cursor position int offset = parameters.getOffset(); // Get the element at the current cursor position PsiElement element = file.findElementAt(offset); // If the element at the current cursor position is a string literal if (element instanceof PsiLiteralExpression && element.getValue() instanceof String) { String text = (String) element.getValue(); String prefix = text.substring(0, offset - element.getTextOffset()); // Asynchronously add code completion items CompletableFuture<List<String>> future = CompletableFuture.supplyAsync(() -> { // Implement the logic to search for predicted code asynchronously over the network here // Return the list of predicted code return searchPredictions(prefix); }); // When the asynchronous operation is complete, add the results to the result set future.thenAccept(predictions -> { predictions.forEach(prediction -> { result.addElement(LookupElementBuilder.create(prefix + " " + prediction)); }); }); } } // Implement the logic to search for predicted code asynchronously over the network here // Return the list of predicted code private List<String> searchPredictions(String prefix) { // Implement the logic to search for predicted code asynchronously over the network here // Return the list of predicted code return Arrays.asList("Hello", "World"); } ```

class TopNHotItems(topSize: Int) extends KeyedProcessFunction[Tuple, ItemViewCount, String] { private var itemState : ListState[ItemViewCount] = _ override def open(parameters: Configuration): Unit = { super.open(parameters) // 命名状态变量的名字和状态变量的类型 val itemsStateDesc = new ListStateDescriptor[ItemViewCount]("itemState-state", classOf[ItemViewCount]) // 从运行时上下文中获取状态并赋值 itemState = getRuntimeContext.getListState(itemsStateDesc) } override def processElement(input: ItemViewCount, context: KeyedProcessFunction[Tuple, ItemViewCount, String]#Context, collector: Collector[String]): Unit = { // 每条数据都保存到状态中 itemState.add(input) // 注册 windowEnd+1 的 EventTime Timer,当触发时,说明收齐了属于windowEnd 窗口的所有商品数据 // 也就是当程序看到 windowend + 1 的水位线 watermark 时,触发 onTimer 回调函数 context.timerService.registerEventTimeTimer(input.windowEnd + 1) } override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Tuple, ItemViewCount, String]#OnTimerContext, out: Collector[String]): Unit = { // 获取收到的所有商品点击量 val allItems: ListBuffer[ItemViewCount] = ListBuffer() import scala.collection.JavaConversions._ for (item <- itemState.get) { allItems += item } // 提前清除状态中的数据,释放空间 itemState.clear() // 按照点击量从大到小排序 val sortedItems = allItems.sortBy(_.count)(Ordering.Long.reverse).take(topSize) // 将排名信息格式化成 String, 便于打印 val result: StringBuilder = new StringBuilder() result.append("******************************\n") result.append("窗口结束时间: ").append(new Timestamp(timestamp - 1)).append("\n") for(i <- sortedItems.indices){ val currentItem: ItemViewCount = sortedItems(i) // e.g. No1: 商品 ID=12224 浏览量 =2413 result.append("No").append(i+1).append(":") .append(" 商品id=").append(currentItem.itemId) .append(" 热门度 =").append(currentItem.count).append("\n") } result.append("******************************") // 控制输出频率,模拟实时滚动结果 Thread.sleep(500) out.collect(result.toString) }

这段代码是什么意思? 这段代码定义了一个KeyedProcessFunction函数,输入参数是ItemViewCount类型的数据,输出参数是String类型的数据。在函数中,定义了一个ListState状态变量itemState,并在open()方法中初始化。在processElement()方法中,每次接收到一个ItemViewCount类型的数据,都将其保存到itemState状态变量中,并注册一个定时器,定时器的触发时间是当前ItemViewCount数据所属的窗口结束时间+1。 在onTimer()方法中,当定时器触发时,首先从itemState状态变量中获取所有的ItemViewCount数据,并清空itemState状态变量。然后按照点击量从大到小排序,取出前topSize个热门商品,并将其格式化成字符串输出。最后通过out.collect()方法将结果输出。 这个函数的作用是计算出每个窗口期间内的热门商品排行榜,并输出结果。
阅读全文

相关推荐

改进代码:import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream} object UpdateStateByKeyTest { //newValues表示当前批次汇总成的(K,V)中相同K的所有V //runningCount表示历史的所有相同key的value总和 def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = { val newCount = runningCount.getOrElse(0) + newValues.sum Some(newCount) } def main(args: Array[String]): Unit = { //1.创建SparkConf对象 val sparkConf: SparkConf = new SparkConf().setAppName("UpdateStateByKeyTest").setMaster("local[2]") //2.创建SparkContext对象 val sc: SparkContext = new SparkContext(sparkConf) //3.设置日志级别 sc.setLogLevel("WARN") //4.创建StreamingContext,两个参数:1.SparkContext对象 2.批处理时间间隔 val ssc: StreamingContext = new StreamingContext(sc, Seconds(5)) //5.配置检查点目录,使用updateStateByKey()方法必须配置检查点目录 ssc.checkpoint("./") //6.连接socket服务,需要socket的地址,端口号,存储级别 val dstream: ReceiverInputDStream[String] = ssc.socketTextStream("192.168.92.131", 9999) //7.按空格切分每一行,并且将切分出来的单词出现的次数记录为1 val wordAndOne: DStream[(String, Int)] = dstream.flatMap(_.split(" ")).map(word => (word, 1)) //8.调用UpdateStateByKey操作,统计每个单词在全局中出现的次数 val result: DStream[(String,Int)] = wordAndOne.updateStateByKey(updateFunction) //9.打印输出结果 result.print() //10.开启流式计算 ssc.start() //11.用于保持程序一直运行,除非人为干预停止 ssc.awaitTermination() } }

class TreeNode: def __init__(self, val=None, left=None, right=None): self.val = val self.left = left self.right = right def infix_to_postfix(infix): operators = {'(': 0, ')': 0, 'NOT': 1, 'AND': 2, 'OR': 3} stack = [] postfix = [] for token in infix: if token in operators: if token == '(': stack.append(token) elif token == ')': while stack[-1] != '(': postfix.append(stack.pop()) stack.pop() else: while stack and operators[stack[-1]] >= operators[token]: postfix.append(stack.pop()) stack.append(token) else: postfix.append(token) while stack: postfix.append(stack.pop()) return postfix def postfix_to_tree(postfix): stack = [] for token in postfix: if token in {'NOT', 'AND', 'OR'}: right = stack.pop() if token == 'NOT': stack.append(TreeNode('NOT', None, right)) else: left = stack.pop() stack.append(TreeNode(token, left, right)) else: stack.append(TreeNode(token)) return stack.pop() def evaluate(root, values): if root.val in values: return values[root.val] elif root.val == 'NOT': return not evaluate(root.right, values) elif root.val == 'AND': return evaluate(root.left, values) and evaluate(root.right, values) elif root.val == 'OR': return evaluate(root.left, values) or evaluate(root.right, values) def print_tree(root, level=0): if root: print_tree(root.right, level + 1) print(' ' * 4 * level + '->', root.val) print_tree(root.left, level + 1) infix = input('请输入命题演算公式:').split() postfix = infix_to_postfix(infix) root = postfix_to_tree(postfix) print('后缀表达式:', postfix) print('二叉树构造过程:') print_tree(root) print('真值表:') variables = list(set(filter(lambda x: x not in {'NOT', 'AND', 'OR'}, infix))) for values in itertools.product([True, False], repeat=len(variables)): values = dict(zip(variables, values)) result = evaluate(root, values) print(values, '->', result)其中有错误NameError: name 'itertools' is not defined。请修改

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

训练集用于训练模型,验证集用于调整模型参数(如学习率、正则化等)以及早期停止策略,而测试集用于最终评估模型的泛化能力。在Keras中,我们可以通过`validation_split`参数设置验证集的比例,例如`validation_...
recommend-type

Python Numpy:找到list中的np.nan值方法

x = np.array([[1, 2, 3, 4], [2, 3, np.nan, 5], [np.nan, 5, 2, 3]]) # 获取包含np.nan的索引 print(np.argwhere(np.isnan(x))) ``` 这将返回一个二维数组,其中包含了所有`np.nan`值的行索引和列索引。 然而...
recommend-type

NR5G网络拒绝码-5gmm_cause = 111 (Protocol error, unspecified).docx

标题中的“NR5G网络拒绝码-5gmm_cause = 111 (Protocol error, unspecified)”是指在5G NR(New Radio)网络中,UE(User Equipment,用户设备)在尝试进行注册时遇到的问题。这个特定的拒绝码111(0x6f)表明存在一...
recommend-type

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码。这个游戏包含了基本的地图布局、玩家控制角色推动箱子到目标位置的功能,不过目前还只是一个简单的控制台版本,你可以根据后续的提示进一步扩展为图形界面版本并添加推流相关功能(推流相对复杂些,涉及到网络传输和流媒体协议等知识,需要借助如 FFmpeg 或者专门的流媒体库来实现,这里先聚焦游戏本身的逻辑构建)
recommend-type

基于simulink建立的PEMFC燃料电池机理模型(国外团队开发的,密歇根大学),包含空压机模型,空气路,氢气路,电堆等模型 可以正常进行仿真

基于simulink建立的PEMFC燃料电池机理模型(国外团队开发的,密歇根大学),包含空压机模型,空气路,氢气路,电堆等模型。 可以正常进行仿真。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"