yolov5双目测距代码
时间: 2023-09-02 16:08:54 浏览: 438
yolov5单目相机测速测距,yolov5,yolov7,可dai写扣扣:2046删532除381
5星 · 资源好评率100%
很抱歉,由于YoloV5不是测距算法,因此没有针对双目测距的特定代码。但是可以使用OpenCV等工具来实现双目测距,以下是一个基本的示例代码:
```python
import cv2
import numpy as np
# 计算双目视差
def stereo_match(left_img, right_img):
# 定义SGBM算法的一些参数
window_size = 3
left_matcher = cv2.StereoSGBM_create(
minDisparity=0,
numDisparities=160,
blockSize=5,
P1=8 * 3 * window_size ** 2,
P2=32 * 3 * window_size ** 2,
disp12MaxDiff=1,
uniquenessRatio=10,
speckleWindowSize=100,
speckleRange=32,
preFilterCap=63,
mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY
)
right_matcher = cv2.ximgproc.createRightMatcher(left_matcher)
# 计算视差图
left_gray = cv2.cvtColor(left_img, cv2.COLOR_BGR2GRAY)
right_gray = cv2.cvtColor(right_img, cv2.COLOR_BGR2GRAY)
left_disp = left_matcher.compute(left_gray, right_gray)
right_disp = right_matcher.compute(right_gray, left_gray)
wls_filter = cv2.ximgproc.createDisparityWLSFilter(left_matcher)
wls_filter.setLambda(80000)
wls_filter.setSigmaColor(1.2)
disparity = wls_filter.filter(left_disp, left_gray, None, right_disp)
# 将视差图转换为深度图
f = 0.8 # 焦距
T = 0.12 # 基线长度
depth = f * T / disparity
return disparity, depth
# 绘制深度图
def draw_depth_map(depth_map, min_depth=0, max_depth=10):
depth_map = np.clip(depth_map, min_depth, max_depth) / max_depth
depth_map = cv2.applyColorMap((depth_map * 255).astype(np.uint8), cv2.COLORMAP_JET)
return depth_map
# 读取左右相机图片
left_img = cv2.imread('left.jpg')
right_img = cv2.imread('right.jpg')
# 计算视差和深度图
disparity, depth_map = stereo_match(left_img, right_img)
# 绘制深度图
depth_map = draw_depth_map(depth_map)
cv2.imshow('depth map', depth_map)
cv2.waitKey()
cv2.destroyAllWindows()
```
此代码使用SGBM算法计算视差,然后将视差图转换为深度图,最后绘制深度图。在此示例中,我们假设相机的焦距为0.8,基线长度为0.12。您可以根据您的相机参数进行调整。
阅读全文