机器学习利用pandas读取波士顿房价数据集为dataframe格式,利用散点图展示其中任意4个特征与标签之间的关系
时间: 2024-06-08 10:11:09 浏览: 154
好的,以下是代码示例:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据集
data = pd.read_csv('boston.csv')
# 选择任意四个特征和标签
features = ['RM', 'LSTAT', 'PTRATIO', 'DIS']
label = 'MEDV'
# 绘制散点图
fig, axs = plt.subplots(2, 2, figsize=(10, 6))
axs = axs.ravel()
for i, feature in enumerate(features):
axs[i].scatter(data[feature], data[label])
axs[i].set_xlabel(feature)
axs[i].set_ylabel(label)
plt.tight_layout()
plt.show()
```
解释一下代码:
1. 首先,我们使用 pandas 的 `read_csv` 函数读取波士顿房价数据集,并将其存储为一个 DataFrame 对象。
2. 然后,我们选择任意四个特征和标签,这里我选择了 'RM'、'LSTAT'、'PTRATIO' 和 'DIS' 这四个特征以及 'MEDV' 标签。
3. 接着,我们使用 matplotlib 库绘制散点图。这里我们使用了 `subplots` 函数创建一个 2x2 的子图,并使用 `scatter` 函数绘制散点图。注意,我们需要使用 `ravel` 函数将子图对象展平为一维数组,这样才能方便地对每个子图进行设置。最后,我们使用 `tight_layout` 函数调整子图之间的间距,并使用 `show` 函数显示图形。
运行代码后,你就可以看到展示了四个特征和标签之间关系的散点图了。
阅读全文
相关推荐


















