判断一个代数系统的运算是否具有可结合性。主函数如下: int main() { int n,i,j,k,l; scanf("%d",&n);//输入集合中元素的个数 int *a = new int[n]; for (i = 0; i < n; i++) { scanf("%d",&a[i]);//输入集合中的元素 } int** op = new int*[n]; for(i = 0; i < n; i++){ op[i] = new int[n]; for(j = 0; j < n; j++){ scanf("%d",&op[i][j]);//输入运算表矩阵,应保证输入值属于a中的元素 } } int e = f1(a,op,n); if(e==1)printf("A is associativity\n"); else printf("A is not associativity\n"); } 请完成判断函数f1
时间: 2024-03-10 14:49:16 浏览: 94
运算符和结合性
5星 · 资源好评率100%
判断一个代数系统的运算是否具有可结合性,需要检查对于任意三个元素a、b、c,是否有(a op b) op c = a op (b op c)。
判断函数f1的实现如下:
```
int f1(int* a, int** op, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (op[op[i][j]][k] != op[i][op[j][k]]) {
return 0; // 不满足可结合性
}
}
}
}
return 1; // 满足可结合性
}
```
该函数的输入参数包括代数系统的元素集合a、运算表矩阵op,以及元素个数n。函数的返回值为1表示代数系统的运算具有可结合性,返回值为0则表示不具有可结合性。
函数的实现采用三重循环,对于集合中的每三个元素a、b、c,分别检查是否满足可结合性的条件。如果存在不满足可结合性的情况,则直接返回0;如果所有情况都满足可结合性,则返回1。
阅读全文