编写pytorch代码,定义个lstm模型,定义个cpso优化算法,调用优化算法去优化模型,读取训练集trainset,计算在训练集上的损失,将最优的参数设置给模型,读取测试集testset,再测试集上测试模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差
时间: 2024-03-21 10:43:30 浏览: 128
好的,以下是代码实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, input):
lstm_out, _ = self.lstm(input.view(len(input), 1, -1))
output = self.linear(lstm_out.view(len(input), -1))
return output[-1]
# 定义CPSO优化算法
class CPSO:
def __init__(self, pop_size, dim, max_iter, c1=2, c2=2, w_min=0.4, w_max=0.9):
self.pop_size = pop_size
self.dim = dim
self.max_iter = max_iter
self.c1 = c1
self.c2 = c2
self.w_min = w_min
self.w_max = w_max
self.w = w_max
self.c = c1 + c2
self.x = torch.rand(pop_size, dim)
self.v = torch.rand(pop_size, dim)
self.pbest = self.x.clone().detach()
self.gbest = self.pbest[0]
def optimize(self, model, trainset):
# 适应值函数
def fitness_func(x):
with torch.no_grad():
for i, param in enumerate(model.parameters()):
param.data = x[i]
loss_func = nn.MSELoss()
loss = 0
for data, label in trainset:
output = model(data)
loss += loss_func(output, label)
return loss.item()
# 初始化粒子群
pbest_fit = [fitness_func(x) for x in self.x]
gbest_fit = min(pbest_fit)
gbest_idx = pbest_fit.index(gbest_fit)
self.gbest = self.pbest[gbest_idx]
# 开始迭代
for iter in range(self.max_iter):
r1 = torch.rand(self.pop_size, self.dim)
r2 = torch.rand(self.pop_size, self.dim)
self.v = self.w * self.v + self.c1 * r1 * (self.pbest - self.x) + self.c2 * r2 * (self.gbest - self.x)
self.x = self.x + self.v
self.x = torch.clamp(self.x, 0, 1) # 限制参数范围
fit = [fitness_func(x) for x in self.x]
for i in range(self.pop_size):
if fit[i] < pbest_fit[i]:
self.pbest[i] = self.x[i]
pbest_fit[i] = fit[i]
if min(pbest_fit) < gbest_fit:
gbest_fit = min(pbest_fit)
gbest_idx = pbest_fit.index(gbest_fit)
self.gbest = self.pbest[gbest_idx]
self.w = self.w_max - (self.w_max - self.w_min) * iter / self.max_iter
# 将最优的参数设置给模型
with torch.no_grad():
for i, param in enumerate(model.parameters()):
param.data = self.gbest[i]
# 定义数据集
class MyDataset(Dataset):
def __init__(self, data, label):
self.data = torch.tensor(data, dtype=torch.float)
self.label = torch.tensor(label, dtype=torch.float)
def __getitem__(self, index):
return self.data[index], self.label[index]
def __len__(self):
return len(self.data)
# 读取数据集
train_data = np.load('train_data.npy')
train_label = np.load('train_label.npy')
test_data = np.load('test_data.npy')
test_label = np.load('test_label.npy')
trainset = MyDataset(train_data, train_label)
testset = MyDataset(test_data, test_label)
# 定义模型和优化算法
model = LSTM(1, 16, 1)
cpso = CPSO(10, sum(p.numel() for p in model.parameters()), 100)
# 使用CPSO优化模型
cpso.optimize(model, trainset)
# 在训练集上计算损失
with torch.no_grad():
loss_func = nn.MSELoss()
loss = 0
for data, label in trainset:
output = model(data)
loss += loss_func(output, label)
print('训练集损失:', loss.item())
# 在测试集上测试模型
with torch.no_grad():
loss_func = nn.MSELoss()
loss = 0
predict_list = []
label_list = []
for data, label in testset:
output = model(data)
loss += loss_func(output, label)
predict_list.append(output.item())
label_list.append(label.item())
print('测试集损失:', loss.item())
# 绘制测试集的预测值和实际值
plt.plot(label_list)
plt.plot(predict_list)
plt.legend(['label', 'predict'])
plt.show()
# 计算测试集的均方根误差
rmse = np.sqrt(np.mean((np.array(label_list) - np.array(predict_list)) ** 2))
print('测试集均方根误差:', rmse)
```
需要注意的是,这段代码中的数据集格式为numpy数组,如果数据集为其他格式,需要进行相应的转换。另外,在实际使用中,可能需要根据情况对模型结构、优化算法等进行调整。
阅读全文