The Support Vector Machines classifier Arguments: C -- penalty term kernel -- kernel function e.g. lambda x, y: ...
时间: 2024-05-19 21:11:15 浏览: 117
The Support Vector Machines (SVM) classifier is a popular machine learning algorithm used for classification tasks. It is a supervised learning algorithm that learns to classify data by finding the best hyperplane that separates the data into different classes. The SVM algorithm works by finding the support vectors, which are the data points closest to the decision boundary, and using these support vectors to define the hyperplane.
The SVM classifier takes two arguments:
1. C: This is the penalty term that controls the trade-off between maximizing the margin and minimizing the classification error. A smaller value of C will result in a larger margin but a smaller number of support vectors, while a larger value of C will result in a smaller margin but a larger number of support vectors.
2. Kernel: This is the kernel function used to transform the input data into a higher-dimensional feature space. The kernel function takes two input vectors x and y and returns a scalar value that measures the similarity between them. Some commonly used kernel functions include the linear kernel, polynomial kernel, and radial basis function (RBF) kernel. The choice of kernel function depends on the nature of the data and the classification task at hand.
阅读全文