C# 用Emgucv4.7 CNN图像分类的训练,测试例程
时间: 2023-11-23 07:32:22 浏览: 189
C#图像处理例子(使用EMGUCV)
5星 · 资源好评率100%
好的,下面是一个简单的 C# 代码示例,使用 EmguCV 4.7 实现卷积神经网络(CNN)图像分类的训练和测试:
```csharp
using Emgu.CV;
using Emgu.CV.Cnn;
using Emgu.CV.Structure;
using Emgu.CV.Util;
using System;
using System.Collections.Generic;
using System.Linq;
namespace CnnImageClassification
{
class Program
{
static void Main(string[] args)
{
// 数据集路径
string dataPath = "path/to/dataset";
// 定义训练和测试数据集
List<Image<Gray, byte>> trainImages = new List<Image<Gray, byte>>();
List<int> trainLabels = new List<int>();
List<Image<Gray, byte>> testImages = new List<Image<Gray, byte>>();
List<int> testLabels = new List<int>();
// 加载数据集
LoadDataset(dataPath, trainImages, trainLabels, testImages, testLabels);
// 定义神经网络结构
ConvolutionLayer conv1 = new ConvolutionLayer(3, 3, 1, 32);
ConvolutionLayer conv2 = new ConvolutionLayer(3, 3, 32, 64);
ConvolutionLayer conv3 = new ConvolutionLayer(3, 3, 64, 128);
MaxPoolLayer pool = new MaxPoolLayer(2, 2);
DropoutLayer dropout = new DropoutLayer(0.25);
DenseLayer dense = new DenseLayer(512);
SoftmaxLayer softmax = new SoftmaxLayer(10);
// 创建神经网络
Net cnn = new Net();
cnn.Add(conv1);
cnn.Add(conv2);
cnn.Add(conv3);
cnn.Add(pool);
cnn.Add(dropout);
cnn.Add(dense);
cnn.Add(softmax);
// 设置损失函数和优化器
LossFunction loss = new LossMultiClass();
Optimizer optimizer = new OptimizerAdam();
// 训练神经网络
cnn.Train(trainImages.ToArray(), trainLabels.ToArray(), loss, optimizer, 10, 64);
// 测试神经网络
int correctCount = 0;
for (int i = 0; i < testImages.Count; i++)
{
int predictedLabel = cnn.Predict(testImages[i]);
if (predictedLabel == testLabels[i])
{
correctCount++;
}
}
double accuracy = (double)correctCount / testImages.Count;
Console.WriteLine("Accuracy: " + accuracy);
}
static void LoadDataset(string dataPath, List<Image<Gray, byte>> trainImages,
List<int> trainLabels, List<Image<Gray, byte>> testImages, List<int> testLabels)
{
// 加载训练图像和标签
string trainDataPath = System.IO.Path.Combine(dataPath, "train");
for (int i = 0; i < 10; i++)
{
string labelPath = System.IO.Path.Combine(trainDataPath, i.ToString());
var files = System.IO.Directory.GetFiles(labelPath);
foreach (var file in files)
{
trainImages.Add(new Image<Gray, byte>(file));
trainLabels.Add(i);
}
}
// 加载测试图像和标签
string testDataPath = System.IO.Path.Combine(dataPath, "test");
for (int i = 0; i < 10; i++)
{
string labelPath = System.IO.Path.Combine(testDataPath, i.ToString());
var files = System.IO.Directory.GetFiles(labelPath);
foreach (var file in files)
{
testImages.Add(new Image<Gray, byte>(file));
testLabels.Add(i);
}
}
}
}
}
```
这个代码示例中,我们使用了 EmguCV 中的 `ConvolutionLayer`、`MaxPoolLayer`、`DropoutLayer`、`DenseLayer`、`SoftmaxLayer` 等类来定义一个简单的卷积神经网络,然后使用 `Net` 类来创建和训练神经网络。我们还使用了 `LossMultiClass` 类来定义损失函数,使用 `OptimizerAdam` 类来定义优化器。最后,我们使用 `Predict()` 方法来测试神经网络的分类性能。
希望这个简单的示例可以对你有所帮助!
阅读全文