C# Emgucv 神经网络算法实现图像分类 例程
时间: 2023-07-30 18:04:42 浏览: 191
C#图像处理例子(使用EMGUCV)
5星 · 资源好评率100%
以下是一个基本的使用Emgu CV实现图像分类的例程,包括数据的预处理、神经网络的构建、训练和测试:
```csharp
using Emgu.CV;
using Emgu.CV.ML;
using Emgu.CV.Structure;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
namespace ImageClassification
{
class Program
{
static void Main(string[] args)
{
// 设置数据集的路径
string dataPath = @"C:\data\images";
// 读取数据集
List<Image<Gray, byte>> images = LoadImages(dataPath);
// 划分训练集和测试集
List<Image<Gray, byte>> trainImages = images.Take(500).ToList();
List<Image<Gray, byte>> testImages = images.Skip(500).ToList();
// 准备训练和测试数据
Matrix<float> trainData = PrepareData(trainImages);
Matrix<float> trainLabels = PrepareLabels(trainImages);
Matrix<float> testData = PrepareData(testImages);
Matrix<float> testLabels = PrepareLabels(testImages);
// 创建神经网络
ANN_MLP neuralNetwork = new ANN_MLP();
neuralNetwork.SetLayerSizes(new int[] { trainData.Rows, 100, 50, 10 });
neuralNetwork.TermCriteria = new MCvTermCriteria(100, 0.01);
neuralNetwork.SetActivationFunction(ANN_MLP.AnnMlpActivationFunction.SigmoidSym, 0, 0);
neuralNetwork.SetTrainMethod(ANN_MLP.AnnMlpTrainMethod.Backprop, 0.1, 0.1);
// 训练神经网络
neuralNetwork.Train(trainData, trainLabels);
// 测试神经网络
float[] expectedLabels = new float[testLabels.Rows];
float[] predictedLabels = new float[testLabels.Rows];
for (int i = 0; i < testLabels.Rows; i++)
{
float[] testDataRow = testData.GetRow(i);
float[] testLabelRow = testLabels.GetRow(i);
neuralNetwork.Predict(testDataRow, predictedLabels);
expectedLabels[i] = Array.IndexOf(testLabelRow, 1);
}
int correctPredictions = expectedLabels.Zip(predictedLabels, (e, p) => e == p ? 1 : 0).Sum();
float accuracy = (float)correctPredictions / testLabels.Rows;
Console.WriteLine($"Test accuracy: {accuracy}");
}
// 加载图像
static List<Image<Gray, byte>> LoadImages(string dataPath)
{
List<Image<Gray, byte>> images = new List<Image<Gray, byte>>();
foreach (string imagePath in Directory.GetFiles(dataPath))
{
Image<Gray, byte> image = new Image<Gray, byte>(imagePath);
images.Add(image);
}
return images;
}
// 准备数据
static Matrix<float> PrepareData(List<Image<Gray, byte>> images)
{
int numImages = images.Count;
int numPixels = images[0].Width * images[0].Height;
Matrix<float> data = new Matrix<float>(numImages, numPixels);
for (int i = 0; i < numImages; i++)
{
Image<Gray, byte> image = images[i];
float[] pixels = image.Data.SelectMany(row => row).Select(x => (float)x / 255f).ToArray();
data.SetRow(i, pixels);
}
return data;
}
// 准备标签
static Matrix<float> PrepareLabels(List<Image<Gray, byte>> images)
{
int numImages = images.Count;
int numClasses = 10; // 假设有10个类别
Matrix<float> labels = new Matrix<float>(numImages, numClasses);
for (int i = 0; i < numImages; i++)
{
int label = i % numClasses;
labels[i, label] = 1f;
}
return labels;
}
}
}
```
这个例程实现了一个简单的多层感知器神经网络,用于对图像进行分类。它假设数据集中有10个类别,每个类别有50张图像。它将前500张图像用于训练,后50张用于测试。在训练神经网络时,它使用反向传播算法和Sigmoid激活函数,并设置了一些超参数。在测试时,它计算了分类的准确度。
阅读全文