请简单描述深度强化学习的PPO算法内容,并给出基于pytorch的可实现的代码。
时间: 2023-05-15 13:08:11 浏览: 206
基于pytorch深度强化学习的PPO,DQN,SAC,DDPG等算法实现python源码.zip
5星 · 资源好评率100%
深度强化学习的PPO算法是一种用于训练智能体的算法,它可以通过优化策略来提高智能体的性能。PPO算法的核心思想是在训练过程中,通过限制策略更新的幅度,来保证策略的稳定性。具体来说,PPO算法会在每个训练步骤中,计算出当前策略与旧策略之间的KL散度,并将其作为约束条件,来限制策略更新的幅度。此外,PPO算法还会使用一个剪切函数,来限制策略更新的幅度,以进一步提高策略的稳定性。
以下是基于pytorch的PPO算法的可实现代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical
class ActorCritic(nn.Module):
def __init__(self):
super(ActorCritic, self).__init__()
self.fc1 = nn.Linear(4, 256)
self.fc2 = nn.Linear(256, 256)
self.actor = nn.Linear(256, 2)
self.critic = nn.Linear(256, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
actor = F.softmax(self.actor(x), dim=-1)
critic = self.critic(x)
return actor, critic
class PPO:
def __init__(self):
self.policy = ActorCritic()
self.optimizer = optim.Adam(self.policy.parameters(), lr=3e-4)
self.gamma = 0.99
self.eps_clip = 0.2
def select_action(self, state):
state = torch.from_numpy(state).float().unsqueeze(0)
actor, _ = self.policy(state)
dist = Categorical(actor)
action = dist.sample()
return action.item()
def update(self, memory):
states = torch.tensor(memory.states, dtype=torch.float)
actions = torch.tensor(memory.actions, dtype=torch.float).view(-1, 1)
rewards = torch.tensor(memory.rewards, dtype=torch.float).view(-1, 1)
next_states = torch.tensor(memory.next_states, dtype=torch.float)
dones = torch.tensor(memory.dones, dtype=torch.float).view(-1, 1)
old_actor, old_critic = self.policy(states)
old_dist = Categorical(old_actor)
old_log_prob = old_dist.log_prob(actions)
for _ in range(10):
actor, critic = self.policy(states)
dist = Categorical(actor)
log_prob = dist.log_prob(actions)
ratio = torch.exp(log_prob - old_log_prob)
advantage = rewards - old_critic.detach()
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1 - self.eps_clip, 1 + self.eps_clip) * advantage
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = F.mse_loss(critic, rewards)
entropy_loss = dist.entropy().mean()
loss = actor_loss + 0.5 * critic_loss - 0.01 * entropy_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```
阅读全文