typedef pair<int,int>pii;vector<pii>graph[N];改写成普通的方式
时间: 2023-08-21 09:13:46 浏览: 153
这段代码可以改写成以下的普通方式:
```
#include <vector>
#include <utility> // for std::pair
const int N = 100; // 假设 N = 100
typedef std::pair<int, int> pii;
std::vector<pii> graph[N];
```
其中,`std::pair`是C++标准库中的一个模板类,用来表示一对值,这里用来表示两个整数。`std::vector`是C++标准库中的一个模板类,表示动态数组。这里使用了模板参数`<pii>`,表示这个vector中存储的是`std::pair<int, int>`类型的数据。
相关问题
typedef pair<int, int> PII;
This code defines a new data type called PII which is a pair of two integers. The first integer is called the "first" and the second integer is called the "second". This data type is commonly used in algorithms and data structures where you need to store two integers together, such as in graph problems where you need to store an edge between two vertices.
import heapqdef prim(graph, start): n = len(graph) visited = [False] * n distance = [float('inf')] * n distance[start] = 0 heap = [(0, start)] while heap: _, u = heapq.heappop(heap) if visited[u]: continue visited[u] = True for v, w in graph[u]: if not visited[v] and w < distance[v]: distance[v] = w heapq.heappush(heap, (w, v)) return sum(distance)def min_distance_sum(graph): n = len(graph) min_distance = float('inf') for i in range(n): distance_sum = prim(graph, i) min_distance = min(min_distance, distance_sum) return min_distancegraph = [ [(1, 2), (2, 1)], [(0, 2), (2, 3), (3, 1)], [(0, 1), (1, 3), (3, 1)], [(1, 1), (2, 1)]]print(min_distance_sum(graph)) # 输出:4把这段代码转换成c++
以下是将 Python 代码转换为 C++ 的版本:
```cpp
#include <iostream>
#include <vector>
#include <queue>
#include <limits>
using namespace std;
typedef pair<int, int> pii;
int prim(vector<vector<pii>>& graph, int start) {
int n = graph.size();
vector<bool> visited(n, false);
vector<int> distance(n, numeric_limits<int>::max());
distance[start] = 0;
priority_queue<pii, vector<pii>, greater<pii>> pq;
pq.push({0, start});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
if (visited[u]) {
continue;
}
visited[u] = true;
for (auto [v, w] : graph[u]) {
if (!visited[v] && w < distance[v]) {
distance[v] = w;
pq.push({w, v});
}
}
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += distance[i];
}
return sum;
}
int min_distance_sum(vector<vector<pii>>& graph) {
int n = graph.size();
int min_distance = numeric_limits<int>::max();
for (int i = 0; i < n; i++) {
int distance_sum = prim(graph, i);
min_distance = min(min_distance, distance_sum);
}
return min_distance;
}
int main() {
vector<vector<pii>> graph = {
{{1, 2}, {2, 1}},
{{0, 2}, {2, 3}, {3, 1}},
{{0, 1}, {1, 3}, {3, 1}},
{{1, 1}, {2, 1}}
};
cout << min_distance_sum(graph) << endl; // 输出:4
return 0;
}
```
阅读全文