def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 更改模型加入CBAM模块
时间: 2023-09-19 20:08:11 浏览: 70
python面试宝典_opt1
要将CBAM模块添加到该模型中,您需要对每个通道的特征图执行以下操作:
1. 通过使用Conv2D层,将通道中的特征图降维到较低的维度。
2. 通过使用CAM和PAM模块,对特征图执行注意力机制。
3. 将注意力机制后的特征图升维回原始维度。
4. 将三个通道的特征图合并,以形成一个新的特征图。
5. 经过一些卷积和池化操作,最后输出预测结果。
以下是您可能会用到的CBAM实现示例:
```python
def channel_attention(inputs, ratio=8):
channels = inputs.shape[-1]
gap = layers.GlobalAveragePooling2D()(inputs)
fc1 = layers.Dense(channels // ratio, activation='relu')(gap)
fc2 = layers.Dense(channels, activation='sigmoid')(fc1)
return layers.Reshape((1, 1, channels))(fc2) * inputs
def spatial_attention(inputs):
conv = layers.Conv2D(filters=1, kernel_size=(7, 7), padding='same', activation='sigmoid')(inputs)
return layers.multiply([inputs, conv])
def CBAM_block(inputs):
channels_att = channel_attention(inputs)
spatial_att = spatial_attention(inputs)
outputs = layers.concatenate([channels_att, spatial_att], axis=-1)
return outputs
```
您可以在每个通道的特征图上应用CBAM块,然后将它们合并以形成新的特征图。以下是您可能会用到的修改后的模型示例:
```python
def MEAN_Spot_CBAM(opt):
# channel 1
inputs1 = layers.Input(shape=(42, 42, 1))
conv1 = layers.Conv2D(3, (5, 5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1)
bn1 = layers.BatchNormalization()(conv1)
cbam1 = CBAM_block(bn1)
pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3, 3))(cbam1)
do1 = layers.Dropout(0.3)(pool1)
# channel 2
inputs2 = layers.Input(shape=(42, 42, 1))
conv2 = layers.Conv2D(3, (5, 5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2)
bn2 = layers.BatchNormalization()(conv2)
cbam2 = CBAM_block(bn2)
pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3, 3))(cbam2)
do2 = layers.Dropout(0.3)(pool2)
# channel 3
inputs3 = layers.Input(shape=(42, 42, 1))
conv3 = layers.Conv2D(8, (5, 5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3)
bn3 = layers.BatchNormalization()(conv3)
cbam3 = CBAM_block(bn3)
pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3, 3))(cbam3)
do3 = layers.Dropout(0.3)(pool3)
# merge 1
merged = layers.concatenate([do1, do2, do3], axis=-1)
# interpretation 1
merged_conv = layers.Conv2D(8, (5, 5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged)
merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2, 2))(merged_conv)
flat = layers.Flatten()(merged_pool)
flat_do = layers.Dropout(0.2)(flat)
# outputs
outputs = layers.Dense(1, activation='linear', name='spot')(flat_do)
# Takes input u, v, os
model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs])
model.compile(
loss={'spot': 'mse'},
optimizer=opt,
metrics={'spot': tf.keras.metrics.MeanAbsoluteError()},
)
return model
```
请注意,这只是一个可能的实现示例,您可以根据您的需求进行修改。
阅读全文