用pytorch写一个深度强化学习代码
时间: 2023-06-18 19:03:59 浏览: 134
好的,以下是一个用PyTorch实现的深度强化学习代码,它使用DQN算法来训练一个智能体在CartPole游戏中保持平衡。
```python
import gym
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# 定义DQN网络
class DQN(nn.Module):
def __init__(self, input_size, output_size, hidden_size=128):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义经验回放缓存
class ReplayBuffer():
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action.squeeze(), reward.squeeze(), next_state, done.squeeze()
def __len__(self):
return len(self.buffer)
# 定义DQN智能体
class DQNAgent():
def __init__(self, state_size, action_size, memory_capacity=10000, batch_size=64, gamma=0.99, epsilon_start=1.0, epsilon_end=0.01, epsilon_decay=0.995):
self.state_size = state_size
self.action_size = action_size
self.memory = ReplayBuffer(memory_capacity)
self.batch_size = batch_size
self.gamma = gamma
self.epsilon_start = epsilon_start
self.epsilon_end = epsilon_end
self.epsilon_decay = epsilon_decay
self.epsilon = epsilon_start
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = DQN(state_size, action_size).to(self.device)
self.target_model = DQN(state_size, action_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters())
self.update_target_model()
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
with torch.no_grad():
values = self.model(state)
return np.argmax(values.cpu().data.numpy())
def remember(self, state, action, reward, next_state, done):
self.memory.push(state, action, reward, next_state, done)
def replay(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
state = torch.FloatTensor(state).to(self.device)
action = torch.LongTensor(action).unsqueeze(1).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
done = torch.FloatTensor(done).unsqueeze(1).to(self.device)
q_values = self.model(state).gather(1, action)
next_q_values = self.target_model(next_state).detach().max(1)[0].unsqueeze(1)
expected_q_values = reward + self.gamma * next_q_values * (1 - done)
loss = F.mse_loss(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def decay_epsilon(self):
self.epsilon = max(self.epsilon * self.epsilon_decay, self.epsilon_end)
# 初始化环境和智能体
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
# 训练智能体
num_episodes = 1000
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
agent.remember(state, action, reward, next_state, done)
total_reward += reward
state = next_state
agent.replay()
agent.decay_epsilon()
agent.update_target_model()
print('Episode: {}, Total Reward: {}'.format(episode, total_reward))
# 测试智能体
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.act(state)
state, reward, done, _ = env.step(action)
total_reward += reward
env.render()
print('Total Reward: {}'.format(total_reward))
env.close()
```
这个代码使用DQN算法来训练一个智能体在CartPole游戏中保持平衡,其中包括定义DQN网络、经验回放缓存、DQN智能体等类,以及训练和测试智能体的代码。你可以通过修改超参数和环境来探索不同的深度强化学习应用。
阅读全文