用pytorch实现一下深度强化学习的代码

时间: 2023-10-02 07:06:20 浏览: 51
深度强化学习是一种将深度学习和强化学习相结合的技术,可以用于解决许多复杂的控制问题。在这里,我将给出一个使用PyTorch实现深度强化学习的简单示例代码。代码将使用DQN算法来解决经典的CartPole问题。 首先,我们需要导入所需的库: ```python import random import numpy as np import gym import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from collections import deque ``` 接下来,我们需要定义智能体的神经网络模型。在这个例子中,我们将使用一个简单的全连接网络,它将接收状态作为输入,并输出每个可能的动作的Q值。在这里,我们定义了一个名为DQN的类,它继承自PyTorch的nn.Module类: ```python class DQN(nn.Module): def __init__(self, state_dim, action_dim): super(DQN, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 然后,我们需要定义一个经验回放缓冲区,它将存储智能体的经验,以便我们可以从中随机抽样来训练神经网络。在这里,我们使用Python的deque库来实现缓冲区: ```python class ReplayBuffer(): def __init__(self, capacity): self.buffer = deque(maxlen=capacity) def push(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def sample(self, batch_size): state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size)) return np.array(state), np.array(action), np.array(reward), np.array(next_state), np.array(done) def __len__(self): return len(self.buffer) ``` 接下来,我们需要定义一个函数来执行智能体的动作,这个函数将负责根据当前状态选择一个动作。在这里,我们将使用epsilon-greedy策略,该策略以epsilon的概率随机选择一个动作,以1-epsilon的概率选择当前Q值最大的动作: ```python def select_action(state, epsilon): if random.random() < epsilon: return env.action_space.sample() else: state = torch.FloatTensor(state).unsqueeze(0).to(device) q_value = policy_net(state) return q_value.max(1)[1].item() ``` 然后,我们需要定义训练函数。在这个函数中,我们将执行一系列动作,并将经验存储在经验回放缓冲区中。然后,我们将从缓冲区中抽样一批经验,并使用它来训练神经网络。在这里,我们将使用Huber损失函数来计算Q值的误差: ```python def train(batch_size, gamma): if len(buffer) < batch_size: return state, action, reward, next_state, done = buffer.sample(batch_size) state = torch.FloatTensor(state).to(device) next_state = torch.FloatTensor(next_state).to(device) action = torch.LongTensor(action).to(device) reward = torch.FloatTensor(reward).to(device) done = torch.FloatTensor(done).to(device) q_value = policy_net(state).gather(1, action.unsqueeze(1)).squeeze(1) next_q_value = target_net(next_state).max(1)[0] expected_q_value = reward + gamma * next_q_value * (1 - done) loss = F.smooth_l1_loss(q_value, expected_q_value.detach()) optimizer.zero_grad() loss.backward() optimizer.step() ``` 最后,我们可以开始训练我们的智能体。在这个例子中,我们将使用CartPole-v0环境,并将训练1000个回合。每个回合将持续最多200个时间步长,并且我们将使用Adam优化器来训练我们的神经网络。在每个回合结束时,我们将更新目标网络,并将epsilon逐渐减小,以使智能体在训练过程中变得更加自信: ```python env = gym.make('CartPole-v0') state_dim = env.observation_space.shape[0] action_dim = env.action_space.n device = torch.device("cuda" if torch.cuda.is_available() else "cpu") policy_net = DQN(state_dim, action_dim).to(device) target_net = DQN(state_dim, action_dim).to(device) target_net.load_state_dict(policy_net.state_dict()) optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) buffer = ReplayBuffer(10000) batch_size = 128 gamma = 0.99 epsilon_start = 1.0 epsilon_final = 0.01 epsilon_decay = 500 for i_episode in range(1000): state = env.reset() epsilon = epsilon_final + (epsilon_start - epsilon_final) * np.exp(-i_episode / epsilon_decay) for t in range(200): action = select_action(state, epsilon) next_state, reward, done, _ = env.step(action) buffer.push(state, action, reward, next_state, done) state = next_state train(batch_size, gamma) if done: break if i_episode % 20 == 0: target_net.load_state_dict(policy_net.state_dict()) print("Episode: {}, score: {}".format(i_episode, t)) ``` 这就是使用PyTorch实现深度强化学习的基本代码。当然,这只是一个简单的例子,实际上,深度强化学习的应用非常广泛,并且还有很多优化技术可以用来提高性能。

相关推荐

最新推荐

recommend-type

使用python绘制好看的箱形图、柱状图、散点图

使用python绘制好看的箱形图、柱状图、散点图
recommend-type

ipython-8.11.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaa1-1.4.0-1.30.aarch64.rpm

安装:rpm -i xx.rpm
recommend-type

AL-SHADE-main.zip

多种智能优化算法设计开发应用,可供学习交流,不断更新资源
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依