用pytorch实现一下深度强化学习的代码
时间: 2023-10-02 13:06:20 浏览: 117
深度强化学习是一种将深度学习和强化学习相结合的技术,可以用于解决许多复杂的控制问题。在这里,我将给出一个使用PyTorch实现深度强化学习的简单示例代码。代码将使用DQN算法来解决经典的CartPole问题。
首先,我们需要导入所需的库:
```python
import random
import numpy as np
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
```
接下来,我们需要定义智能体的神经网络模型。在这个例子中,我们将使用一个简单的全连接网络,它将接收状态作为输入,并输出每个可能的动作的Q值。在这里,我们定义了一个名为DQN的类,它继承自PyTorch的nn.Module类:
```python
class DQN(nn.Module):
def __init__(self, state_dim, action_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
然后,我们需要定义一个经验回放缓冲区,它将存储智能体的经验,以便我们可以从中随机抽样来训练神经网络。在这里,我们使用Python的deque库来实现缓冲区:
```python
class ReplayBuffer():
def __init__(self, capacity):
self.buffer = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
state, action, reward, next_state, done = zip(*random.sample(self.buffer, batch_size))
return np.array(state), np.array(action), np.array(reward), np.array(next_state), np.array(done)
def __len__(self):
return len(self.buffer)
```
接下来,我们需要定义一个函数来执行智能体的动作,这个函数将负责根据当前状态选择一个动作。在这里,我们将使用epsilon-greedy策略,该策略以epsilon的概率随机选择一个动作,以1-epsilon的概率选择当前Q值最大的动作:
```python
def select_action(state, epsilon):
if random.random() < epsilon:
return env.action_space.sample()
else:
state = torch.FloatTensor(state).unsqueeze(0).to(device)
q_value = policy_net(state)
return q_value.max(1)[1].item()
```
然后,我们需要定义训练函数。在这个函数中,我们将执行一系列动作,并将经验存储在经验回放缓冲区中。然后,我们将从缓冲区中抽样一批经验,并使用它来训练神经网络。在这里,我们将使用Huber损失函数来计算Q值的误差:
```python
def train(batch_size, gamma):
if len(buffer) < batch_size:
return
state, action, reward, next_state, done = buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.LongTensor(action).to(device)
reward = torch.FloatTensor(reward).to(device)
done = torch.FloatTensor(done).to(device)
q_value = policy_net(state).gather(1, action.unsqueeze(1)).squeeze(1)
next_q_value = target_net(next_state).max(1)[0]
expected_q_value = reward + gamma * next_q_value * (1 - done)
loss = F.smooth_l1_loss(q_value, expected_q_value.detach())
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
最后,我们可以开始训练我们的智能体。在这个例子中,我们将使用CartPole-v0环境,并将训练1000个回合。每个回合将持续最多200个时间步长,并且我们将使用Adam优化器来训练我们的神经网络。在每个回合结束时,我们将更新目标网络,并将epsilon逐渐减小,以使智能体在训练过程中变得更加自信:
```python
env = gym.make('CartPole-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
policy_net = DQN(state_dim, action_dim).to(device)
target_net = DQN(state_dim, action_dim).to(device)
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
buffer = ReplayBuffer(10000)
batch_size = 128
gamma = 0.99
epsilon_start = 1.0
epsilon_final = 0.01
epsilon_decay = 500
for i_episode in range(1000):
state = env.reset()
epsilon = epsilon_final + (epsilon_start - epsilon_final) * np.exp(-i_episode / epsilon_decay)
for t in range(200):
action = select_action(state, epsilon)
next_state, reward, done, _ = env.step(action)
buffer.push(state, action, reward, next_state, done)
state = next_state
train(batch_size, gamma)
if done:
break
if i_episode % 20 == 0:
target_net.load_state_dict(policy_net.state_dict())
print("Episode: {}, score: {}".format(i_episode, t))
```
这就是使用PyTorch实现深度强化学习的基本代码。当然,这只是一个简单的例子,实际上,深度强化学习的应用非常广泛,并且还有很多优化技术可以用来提高性能。
阅读全文