import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras import layers from keras import regularizers import os import keras import keras.backend as K import numpy as np from keras.callbacks import LearningRateScheduler data = "data.csv" df = pd.read_csv(data, header=0, index_col=0) df1 = df.drop(["y"], axis=1) lbls = df["y"].values - 1 wave = np.zeros((11500, 178)) z = 0 for index, row in df1.iterrows(): wave[z, :] = row z+=1 mean = wave.mean(axis=0) wave -= mean std = wave.std(axis=0) wave /= std def one_hot(y): lbl = np.zeros(5) lbl[y] = 1 return lbl target = [] for value in lbls: target.append(one_hot(value)) target = np.array(target) wave = np.expand_dims(wave, axis=-1) model = Sequential() model.add(layers.Conv1D(64, 15, strides=2, input_shape=(178, 1), use_bias=False)) model.add(layers.ReLU()) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(32)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(5, activation="softmax")) model.summary() save_path = './keras_model3.h5' if os.path.isfile(save_path): model.load_weights(save_path) print('reloaded.') adam = keras.optimizers.adam() model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["acc"]) # 计算学习率 def lr_scheduler(epoch): # 每隔100个epoch,学习率减小为原来的0.5 if epoch % 100 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.5) print("lr changed to {}".format(lr * 0.5)) return K.get_value(model.optimizer.lr) lrate = LearningRateScheduler(lr_scheduler) history = model.fit(wave, target, epochs=400, batch_size=128, validation_split=0.2, verbose=2, callbacks=[lrate]) model.save_weights(save_path) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()

时间: 2023-06-09 19:07:04 浏览: 161
PDF

Matplotlib.pyplot 三维绘图的实现示例

这段代码是用来训练一个深度学习模型的代码,使用了Keras和Tensorflow进行模型的搭建、训练和保存。该模型包含了卷积层、批量归一化层、Dropout层、LSTM层和全连接层,并且最终使用softmax激活函数得到预测的类别。通过对数据进行处理,将输入数据按照一定的规范进行规范化,将标签转换成了一个one-hot编码的形式。最后,该代码通过在数据上进行训练,得到一个可以用来做预测的深度学习模型。
阅读全文

相关推荐

import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)

import tensorflow as tf import pickle import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('D:\python-learn\data.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback])文件中的数据是怎么样进行训练的

import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import backend as K from keras.optimizers import Adam import skfuzzy as fuzz import pandas as pd from sklearn.model_selection import train_test_split # 绘制损失曲线 import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score data = pd.read_excel(r"D:\pythonProject60\filtered_data1.xlsx") # 读取数据文件 # Split data into input and output variables X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 导入MNIST数据集 # 数据预处理 y_train = np_utils.to_categorical(y_train, 3) y_test = np_utils.to_categorical(y_test, 3) # 创建DNFN模型 model = Sequential() model.add(Dense(64, input_shape=(11,), activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128) # 使用DNFN模型进行预测 y_pred = model.predict(X_test) y_pred= np.argmax(y_pred, axis=1) print(y_pred) # 计算模糊分类 fuzzy_pred = [] for i in range(len(y_pred)): fuzzy_class = np.zeros((3,)) fuzzy_class[y_pred[i]] = 1.0 fuzzy_pred.append(fuzzy_class) fuzzy_pred = np.array(fuzzy_pred) print(fuzzy_pred)获得其运行时间

import tensorflow as tf import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt # 从Excel文件中读取数据 data = pd.read_excel('E:\学习\python\data2.xlsx', engine='openpyxl') input_data = data.iloc[:, :12].values #获取Excel文件中第1列到第12列的数据 output_data = data.iloc[:, 12:].values #获取Excel文件中第13列到最后一列的数据 # 数据归一化处理 scaler_input = MinMaxScaler() scaler_output = MinMaxScaler() input_data = scaler_input.fit_transform(input_data) output_data = scaler_output.fit_transform(output_data) # 划分训练集和验证集 X_train, X_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.1, random_state=42) # 定义神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(12,)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(10, activation=tf.keras.layers.LeakyReLU(alpha=0.1)), tf.keras.layers.Dense(8, activation='linear') ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') # 定义学习率衰减 def scheduler(epoch, lr): if epoch % 50 == 0 and epoch != 0: return lr * 0.1 else: return lr callback = tf.keras.callbacks.LearningRateScheduler(scheduler) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=200, batch_size=50, callbacks=[callback]) # 导出损失函数曲线 plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.savefig('loss_curve.png')

mport numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import backend as K from keras.optimizers import Adam import skfuzzy as fuzz import pandas as pd from sklearn.model_selection import train_test_split # 绘制损失曲线 import matplotlib.pyplot as plt import time from sklearn.metrics import accuracy_score data = pd.read_excel(r"D:\pythonProject60\filtered_data1.xlsx") # 读取数据文件 # Split data into input and output variables X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 导入MNIST数据集 # 数据预处理 y_train = np_utils.to_categorical(y_train, 3) y_test = np_utils.to_categorical(y_test, 3) # 创建DNFN模型 start_time=time.time() model = Sequential() model.add(Dense(64, input_shape=(11,), activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=128) # 使用DNFN模型进行预测 y_pred = model.predict(X_test) y_pred= np.argmax(y_pred, axis=1) print(y_pred) # 计算模糊分类 fuzzy_pred = [] for i in range(len(y_pred)): fuzzy_class = np.zeros((3,)) fuzzy_class[y_pred[i]] = 1.0 fuzzy_pred.append(fuzzy_class) fuzzy_pred = np.array(fuzzy_pred) end_time = time.time() print("Total time taken: ", end_time - start_time, "seconds")获得运行结果并分析

import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder from keras.models import Sequential from keras.layers import Dense from keras.callbacks import History import matplotlib.pyplot as plt # 读取数据集 data = pd.read_csv('data-04-zoo.csv', header=None) # 切分x和y x = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 对y标签进行独热编码处理 label_encoder = LabelEncoder() y = label_encoder.fit_transform(y) onehot_encoder = OneHotEncoder(sparse=False) y = y.reshape(len(y), 1) y = onehot_encoder.fit_transform(y) # 搭建网络模型 model = Sequential() model.add(Dense(16, input_dim=16, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(7, activation='softmax')) # 模型配置 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 history = History() model.fit(x, y, epochs=200, batch_size=16, validation_split=0.2, callbacks=[history]) # 绘制训练集和验证集的损失曲线 plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() # 绘制训练集和验证集的准确率曲线 plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() # 保存模型 model.save('model1.h5')from google.protobuf.internal import builder as _builder ImportError: cannot import name 'builder' from 'google.protobuf.internal' (C:\ProgramData\anaconda3\envs\demo\lib\site-packages\google\protobuf\internal\__init__.py)

将冒号后面的代码改写成一个nn.module类:import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

import numpy as npimport pandas as pdfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, LSTMdf = pd.read_csv('AAPL.csv') # 载入股票数据# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))scaled_data = scaler.fit_transform(df['Close'].values.reshape(-1, 1))# 训练集和测试集划分prediction_days = 30x_train = []y_train = []for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0])x_train, y_train = np.array(x_train), np.array(y_train)x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))# 构建BP神经网络模型model = Sequential()model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))model.add(Dropout(0.2))model.add(LSTM(units=50, return_sequences=True))model.add(Dropout(0.2))model.add(LSTM(units=50))model.add(Dropout(0.2))model.add(Dense(units=1))model.compile(optimizer='adam', loss='mean_squared_error')model.fit(x_train, y_train, epochs=25, batch_size=32)# 使用模型进行预测test_start = len(scaled_data) - prediction_daystest_data = scaled_data[test_start:, :]x_test = []for x in range(prediction_days, len(test_data)): x_test.append(test_data[x-prediction_days:x, 0])x_test = np.array(x_test)x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))predicted_price = model.predict(x_test)predicted_price = scaler.inverse_transform(predicted_price)# 可视化预测结果import matplotlib.pyplot as pltplt.plot(df['Close'].values)plt.plot(range(test_start, len(df)), predicted_price)plt.show()介绍

最新推荐

recommend-type

深圳混泥土搅拌站生产过程中环境管理制度.docx

深圳混泥土搅拌站生产过程中环境管理制度
recommend-type

应用商城1.4+软件库安卓源码2.4+配置教程集.zip

一款由软件库、线报分享、程序工具箱三合一聚合程序源码。软件(文章)支持免费、密码、会员、付费、卡密、广告多种限制类型,不仅适合引流还适合进行流量变现。应用商城源码版和母体安装包都放在一个链接里面了 母体安装包配置教程:https://www.bilibili.com/video/BV1AyWQeMEkv/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a 应用商城源码配置教程:https://www.bilibili.com/video/BV1Ry411i7Qr/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a 软件库源码配置教程:https://www.bilibili.com/video/BV1vs421T71P/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

模拟IC设计在无线通信中的五大机遇与四大挑战深度解读

![模拟IC设计在无线通信中的五大机遇与四大挑战深度解读](http://www.jrfcl.com/uploads/201909/5d905abeb9c72.jpg) # 摘要 模拟IC设计在无线通信领域扮演着至关重要的角色,随着无线通信市场的快速增长,模拟IC设计的需求也随之上升。本文分析了模拟IC设计在无线通信中的机遇,特别是在5G和物联网(IoT)等新兴技术的推动下,对能效和尺寸提出了更高的要求。同时,本文也探讨了设计过程中所面临的挑战,包括制造工艺的复杂性、电磁干扰、信号完整性、成本控制及技术标准与法规遵循等问题。最后,文章展望了未来的发展趋势,提出了创新设计方法论、人才培养与合作
recommend-type

如何使用C语言在6MHz频率下,按照4800bps波特率和方式1通信协议,为甲乙两台机器编写程序实现数据传输?具体步骤包括甲机发送二进制序列0,1,2,1FH到乙机,以及乙机将接收到的数据存储在地址为20H开始的内部RAM中。通信过程中应考虑查询方式的编程细节。

在C语言中通过串口通信(通常是使用软件UART或硬件提供的API)来实现在6MHz频率下,4800bps波特率和方式1通信协议的数据传输,需要遵循以下步骤: 1. **设置硬件接口**: - 确保你已经连接了正确的串行端口,并配置其工作模式为方式1(通常涉及到控制寄存器的设置,如波特率、数据位数、停止位和奇偶校验等)。对于大多数现代微控制器,例如AVR系列,可以使用`UCSRB`和`UBRRH`寄存器进行配置。 2. **初始化串口**: ```c #include <avr/io.h> // ... (其他头文件) UCSR0B = (1 << TXEN0)