score1 = silhouette_score(X, labels) score2 = calinski_harabasz_score(X, labels)为什么是用X来进行评价指标的对比
时间: 2024-04-05 16:32:28 浏览: 50
在这里,X代表数据集,labels代表数据集中的聚类结果。评价指标是用来衡量聚类质量的,而聚类的目的是将数据集中的对象划分为不同的组,因此评价指标需要使用数据集来计算。在这里,silhouette_score和calinski_harabasz_score都是用数据集X和labels来计算聚类质量的,所以需要使用X来进行评价指标的对比。
相关问题
修改代码 j=0 i=0 sc1=[] x1=[] while i<=10: clustering = DBSCAN(eps=0.01+j, min_samples=5).fit(X) labels = clustering.labels_ score = silhouette_score(X, labels) sc1.append(score) x1.append((j+0.01)) j=j+0.001 i=i+1 plt.plot(x1,sc1,marker='o') plt.xlabel('eps') plt.ylabel('score') plt.xticks(x1) plt.show() j=0 i=0 sc2=[] x2=[] while i<=10: clustering = DBSCAN(eps=0.01, min_samples=5+j).fit(X) labels = clustering.labels_ score = silhouette_score(X, labels) sc2.append(score) x2.append(int(j+5)) j=j+2 i=i+1 plt.plot(x2,sc2,marker='o') plt.xlabel('min_samples') plt.ylabel('score') plt.xticks(x2) plt.show() #Calinski-Harabaz 指数 j=0 i=0 sc3=[] x3=[] while i<=10: clustering = DBSCAN(eps=0.01+j, min_samples=5).fit(X) labels = clustering.labels_ score = calinski_harabasz_score(X, labels) sc3.append(score) x3.append(j+0.01) j=j+0.001 i=i+1 plt.plot(x3,sc3,marker='o') plt.xlabel('eps') plt.ylabel('score') plt.xticks(x3) plt.show() j=0 i=0 sc4=[] x4=[] while i<=10: clustering = DBSCAN(eps=0.01, min_samples=5+j).fit(X) labels = clustering.labels_ score = calinski_harabasz_score(X, labels) sc4.append(score) x4.append(int(j+5)) j=j+2 i=i+1 plt.plot(x4,sc4,marker='o') plt.xlabel('min_samples') plt.ylabel('score') plt.xticks(x4) plt.show()
这段代码使用了DBSCAN聚类算法,通过对eps和min_samples参数的调整,计算出对应的轮廓系数(silhouette_score)和Calinski-Harabasz指数(calinski_harabasz_score)。
其中,第一个while循环是对eps的调整,第二个while循环是对min_samples的调整,第三个和第四个while循环则是对应的指数的计算。每个while循环内部都有一个clustering对象,表示一个DBSCAN聚类模型,通过fit()方法对数据进行聚类,然后计算对应的指标得分,并将得分和参数的值存入对应的列表中。最后使用plt库对结果进行可视化展示。
需要注意的是,该代码在调整eps和min_samples时,只是进行了一定范围的遍历,可能并不一定能够找到最优的参数值。因此,在实际使用中,需要根据具体情况进行参数的调整和优化。
# 读取数据集 data = pd.read_csv('./ebs/waveform-5000.csv') epsilon = 1e-10 # 去除第一行数据(属性名称) data = data.iloc[1:] # 提取属性列和类别列 X = data.iloc[:, :-1].values.astype(float) #x表示属性 y_true = data.iloc[:, -1].values #y表示类别,最后一列 # 数据标准化 scaler = MinMaxScaler(feature_range=(0, 1)) X_scaled = scaler.fit_transform(X) # 初始化NMF模型 n_components = range(2, 20) # 不同的n_components值 silhouette_scores = [] # 存储每个n_components的轮廓系数 best_silhouette_score = -1 best_n_components = -1 # 对不同的n_components进行迭代 for n in n_components: nmf = NMF(n_components=n) features = nmf.fit_transform(X_scaled) labels = nmf.transform(X_scaled).argmax(axis=1) # labels2 = nmf.components_.argmax(axis=1) # 根据聚类结果计算轮廓系数 # silhouette_avg = silhouette_score(X_scaled, labels) silhouette_avg = calinski_harabasz_score(X_scaled, labels) silhouette_scores.append(silhouette_avg) print(f"n_components={n}: Silhouette Score = {silhouette_avg}") # 选择最佳的n_components if silhouette_avg > best_silhouette_score: best_silhouette_score = silhouette_avg best_n_components = n print(f"best n_components = {best_n_components}") # 绘制得分图 plt.plot(n_components, silhouette_scores, marker='o') plt.title("NMF Clustering Performance") plt.xlabel("n_components") plt.ylabel("Silhouette Score") plt.show() print(f"best n_components = {best_n_components}") print(f"best Silhouette Score = {best_silhouette_score}") # 使用最佳的n_components进行聚类 best_nmf = NMF(n_components=best_n_components) best_features = best_nmf.fit_transform(X_scaled) # labels = best_nmf.components_.argmax(axis=1) labels = best_nmf.transform(X_scaled).argmax(axis=1) # 使用PCA进行降维和可视化 pca = PCA(n_components=2) X_pca = pca.fit_transform(X_scaled) # 可视化聚类结果 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels) plt.title(f"NMF Clustering (n_components={best_n_components}) with PCA Visualization") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.show()中文解析代码流程和步骤
这段代码实现了对一个数据集进行聚类分析的过程,具体流程如下:
1. 读取数据集
使用pandas库中的read_csv函数读取csv格式的数据文件,存储为data变量。
2. 数据预处理
去除第一行数据(属性名称),并将属性列和类别列分别存储为X和y_true变量。使用MinMaxScaler对属性列进行归一化处理,存储为X_scaled变量。
3. 初始化NMF模型
定义一个range(2,20)的n_components值列表,表示不同的聚类簇数。使用NMF类初始化模型,并对不同的n_components进行迭代训练。对于每个n_components,使用fit_transform函数计算特征矩阵features和标签矩阵labels。使用calinski_harabasz_score函数计算聚类结果的轮廓系数,并将结果存储在silhouette_scores列表中。
4. 选择最佳的n_components
对于每个n_components,比较其对应的轮廓系数与当前最高轮廓系数,如果更高则更新最高轮廓系数和最佳的n_components值。
5. 聚类分析
使用最佳的n_components值重新训练NMF模型,得到特征矩阵best_features和标签矩阵labels。使用PCA进行降维,将属性列降为二维,存储为X_pca变量。使用散点图可视化聚类结果,横坐标和纵坐标分别为X_pca的两个主成分,颜色表示不同的聚类簇。
总之,这段代码展示了一个完整的数据聚类分析过程,包括数据预处理、模型训练、结果评估和可视化等步骤。
阅读全文