STDP强化学习曲线 def rl(t): if t>0: return -par.A_plus*np.exp(-float(t)/par.tau_plus) if t<=0: return par.A_minus*np.exp(float(t)/par.tau_minus)
时间: 2024-04-01 14:32:46 浏览: 57
这段代码是STDP(Spike-Timing-Dependent Plasticity)中的学习规则,用于模拟突触可塑性的过程。其中,A_plus和A_minus是突触前后神经元在一定时间窗口内的活跃度差异对突触权重调整的影响因子。tau_plus和tau_minus分别是突触前后神经元在一定时间窗口内的活跃度对突触权重调整的滞后时间常数。这个函数根据时间t的正负返回调整后的权重值,用于强化学习中的权重更新。但是,它并不是强化学习的典型曲线,更准确的说,它是神经元之间的突触权重更新规则。
相关问题
STDP权重更新规则 def update(w, del_w): if del_w<0: return w + par.sigma*del_w*(w-abs(par.w_min))*par.scale elif del_w>0: return w + par.sigma*del_w*(par.w_max-w)*par.scale
这是一个STDP(Spike-Timing-Dependent Plasticity)的权重更新规则,其中w表示突触的权重,del_w表示突触前后神经元的时间差,par是一些参数。当del_w小于0时,表示突触前神经元的激发时间比后神经元早,此时需要增加突触权重以增强突触传递的信号,公式中的sigma是STDP的学习速率,w_min是突触权重的下限,scale是一个缩放因子;当del_w大于0时,表示突触前神经元的激发时间比后神经元晚,此时需要减少突触权重以削弱突触传递的信号,公式中的w_max是突触权重的上限。
出现错误,请优化。错误描述:ERROR Brian 2 encountered an unexpected error. If you think this is a bug in Brian 2, please report this issue either to the discourse forum at <http://brian.discourse.group/>, or to the issue tracker at <https://github.com/brian-team/brian2/issues>. Please include this file with debug information in your report: C:\Users\mana\AppData\Local\Temp\brian_debug_pgl7l4v3.log Additionally, you can also include a copy of the script that was run, available at: C:\Users\mana\AppData\Local\Temp\brian_script_ixr169pb.py Thanks! [brian2] Traceback (most recent call last): File "E:/SNN/python/project/测试.py", line 36, in <module> synapses = Synapses(neurons, neurons, stdp_eqs, on_pre=stdp_on_pre, on_post=stdp_on_post) File "C:\Users\mana\AppData\Local\Programs\Python\Python37\lib\site-packages\brian2\synapses\synapses.py", line 822, in __init__ self._create_variables(model, user_dtype=dtype) File "C:\Users\mana\AppData\Local\Programs\Python\Python37\lib\site-packages\brian2\synapses\synapses.py", line 1175, in _create_variables check_identifier_pre_post(eq.varname) File "C:\Users\mana\AppData\Local\Programs\Python\Python37\lib\site-packages\brian2\groups\neurongroup.py", line 89, in check_identifier_pre_post raise ValueError(f"'{identifier}' cannot be used as a variable name, the " ValueError: 'A_post' cannot be used as a variable name, the '_pre' and '_post' suffixes are used to refer to pre- and post-synaptic variables in synapses.
非常抱歉遇到了错误。根据错误信息,问题出在使用了`A_post`作为变量名。这是因为在Brian2中,`_pre`和`_post`后缀用于表示突触前后的变量。
为了解决这个问题,我们可以修改STDP规则的变量名,以避免和预定义的后缀冲突。
以下是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
from brian2 import *
# 设置参数
N = 100 # 神经元数量
duration = 500 * ms # 模拟时间
dt = 0.1 * ms # 时间步长
# 定义方程和STDP规则
eqs = '''
dv/dt = (I - v) / (10*ms) : 1 (unless refractory)
I : 1
'''
# 定义STDP规则
stdp_eqs = '''
w : 1
dApre/dt = -Apre / tau_pre : 1 (event-driven)
dApost/dt = -Apost / tau_post : 1 (event-driven)
'''
stdp_on_pre = '''
v_post += w
Apre += dApre
w = clip(w + Apost, 0, w_max)
'''
stdp_on_post = '''
Apost += dApost
w = clip(w + Apre, 0, w_max)
'''
# 创建神经元组和连接权重
neurons = NeuronGroup(N, eqs, threshold='v>1', reset='v=0', refractory=5*ms)
synapses = Synapses(neurons, neurons, stdp_eqs, on_pre=stdp_on_pre, on_post=stdp_on_post)
synapses.connect()
# 随机初始化神经元电流和连接权重
neurons.I = 'rand()'
synapses.w = 'rand()'
# 记录神经元脉冲
spikes = SpikeMonitor(neurons)
# 运行仿真
run(duration)
# 提取脉冲时间和神经元索引
spike_times = spikes.t
spike_indices = spikes.i
# 将脉冲分类为5个类别
num_classes = 5
classes = [[] for _ in range(num_classes)]
for t, idx in zip(spike_times, spike_indices):
class_idx = int(idx / (N / num_classes))
classes[class_idx].append(t)
# 绘制脉冲响应结果
plt.figure(figsize=(10, 5))
for i, class_spikes in enumerate(classes):
plt.eventplot(class_spikes, color='C{}'.format(i), linewidths=0.5)
plt.xlabel('Time (ms)')
plt.ylabel('Class Index')
plt.title('Spike Response')
plt.xlim(0, duration/ms)
plt.ylim(0, num_classes-1)
plt.show()
```
请注意,我们将`dA_pre`和`dA_post`改为`dApre`和`dApost`,以避免与后缀冲突。同时,我们也将相应的变量名在STDP规则中进行了修改。
如果您还遇到任何问题,请随时向我提问。非常抱歉给您带来的不便。
阅读全文