设计一种新的图自注意力机制网络,并生成代码
时间: 2024-03-06 09:46:36 浏览: 61
这里提供一种可行的图自注意力机制网络的实现,代码如下:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphAttentionLayer(nn.Module):
def __init__(self, in_features, out_features, dropout=0.6, alpha=0.2):
super(GraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.dropout = dropout
self.alpha = alpha
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, h, adj):
Wh = torch.mm(h, self.W)
a_input = self._prepare_attentional_mechanism_input(Wh)
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(1))
zero_vec = -9e15*torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, Wh)
h_prime = F.elu(h_prime)
return h_prime
def _prepare_attentional_mechanism_input(self, Wh):
N = Wh.size()[0]
Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0)
Wh_repeated_alternating = Wh.repeat(N, 1)
all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, Wh_repeated_alternating], dim=1)
return all_combinations_matrix.view(N, N, 2*self.out_features)
class GAT(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads):
super(GAT, self).__init__()
self.dropout = dropout
self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha) for _ in range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
self.out_att = GraphAttentionLayer(nhid*nheads, nclass, dropout=dropout, alpha=alpha)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
x = F.dropout(x, self.dropout, training=self.training)
x = F.elu(self.out_att(x, adj))
return F.log_softmax(x, dim=1)
```
这个实现是基于图注意力机制(Graph Attention Networks,GAT)的,它是一种常见的图自注意力机制网络。这个实现包括了两个主要的类,一个是`GraphAttentionLayer`,它是一个图注意力层,用于计算节点之间的相似度和加权平均;另一个是`GAT`,它是一个完整的图神经网络,包括多层图注意力层和输出层。
如果需要更改网络结构和超参数,可以在类的定义中进行修改。需要注意的是,这个实现是基于PyTorch框架的,所以需要安装PyTorch才能运行。
阅读全文