怎么在卷积层加入正则化项
时间: 2024-04-27 10:22:44 浏览: 86
irntv.zip_L1-TV_L2 正则化_TV-norm_tv 正则_去卷积 正则化
在卷积层加入正则化项可以通过在卷积层后添加正则化层来实现。常用的卷积层正则化方法有L1正则化、L2正则化和Dropout正则化。以L2正则化为例,可以在卷积层后添加一个L2正则化层,代码实现如下:
```python
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, Activation
from keras.regularizers import l2
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, kernel_regularizer=l2(0.01)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
```
在上面的代码中,通过`kernel_regularizer`参数将L2正则化项加入到全连接层中。`l2(0.01)`表示L2正则化项的系数为0.01。
阅读全文