matlab中y_char=vectorize(y)
时间: 2024-05-14 11:14:05 浏览: 75
在MATLAB中,`vectorize`函数用于将函数句柄或字符串表示的函数转换为矢量化函数句柄。在这种情况下,`y`是一个函数句柄或字符串表示的函数,并且`y_char`是一个矢量化函数句柄。这意味着`y_char`可以接受向量输入并返回相应的向量输出。例如:
```
y = @(x) sin(x);
y_char = vectorize(y);
x = [0, pi/2, pi];
y_vec = y_char(x);
```
在这个例子中,`y`是一个匿名函数,它计算`sin`函数的值。`vectorize(y)`将`y`转换为一个矢量化函数句柄,即`y_char`。然后,我们可以将`x`作为向量传递给`y_char`,并使用`y_vec`保存结果。`y_vec`是一个包含`sin(0)`、`sin(pi/2)`和`sin(pi)`的向量。
相关问题
train_X = vectorize_documents(train_documents) test_X = vectorize_documents(test_documents) # 训练朴素贝叶斯分类器 classifiers = [] for i in range(5): y = [1 if label == i else 0 for label in train_labels] clf = train_classifier(train_X, y) classifiers.append(clf)
这段代码实现了一个朴素贝叶斯分类器的训练过程。其中,train_X 是训练数据的特征矩阵,test_X 是测试数据的特征矩阵,train_labels 是训练数据的类别标签。
具体来说,该代码将数据集按照类别分为 5 个部分,分别训练 5 个二分类器,每个二分类器用于将某个类别与其他类别区分开来。训练过程中,将训练数据的类别标签转化为 0/1 的形式,其中 1 表示该样本属于当前正在训练的类别,0 表示不属于。然后,使用该类别的训练数据和标签来训练一个朴素贝叶斯分类器 clf,并将其存储在 classifiers 列表中。最终,可以使用这些分类器对测试数据进行分类,将每个样本分别输入到 5 个分类器中,选择得分最高的分类器的类别作为该样本的预测类别。
import numpy as np from tensorflow import keras from sklearn.decomposition import PCA import matplotlib.pyplot as plt (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() Data_Vectorize = train_data.reshape(60000,784) N = 1000; index = np.where(train_labels==0)[0] index_0 = index[0:N] Data_0_Vectorize = Data_Vectorize[index_0] index = np.where(train_labels==1)[0] index_1 = index[0:N] Data_1_Vectorize = Data_Vectorize[index_1] Data_01_Vectorize = np.zeros([2*N,784]) Data_01_Vectorize[:N,:] = Data_0_Vectorize Data_01_Vectorize[N:,:] = Data_1_Vectorize My_pca = PCA(n_components=3) Data_01_Vectorize_DR = My_pca.fit_transform(Data_01_Vectorize) plt.scatter(Data_01_Vectorize_DR[:,0],Data_01_Vectorize_DR[:,1]) plt.xlabel('PC1') plt.ylabel('PC2') plt.show()在该代码基础上,针对“0”“1”混合样本,在PC1-PC2构成的低维空间中进行高斯混合聚类。聚类总数设置为2。在PC1-PC2散点图基础上画出高斯混合聚类的中心和3倍方差组成的椭圆形边界。
好的,我来回答你的问题。
针对“0”“1”混合样本,在PC1-PC2构成的低维空间中进行高斯混合聚类,可以使用sklearn中的GaussianMixture模型。具体实现步骤如下:
首先,需要导入GaussianMixture模型:
```
from sklearn.mixture import GaussianMixture
```
接着,对数据进行高斯混合聚类:
```
gmm = GaussianMixture(n_components=2).fit(Data_01_Vectorize_DR[:, :2])
labels = gmm.predict(Data_01_Vectorize_DR[:, :2])
```
这里将聚类总数设置为2,使用fit方法对数据进行拟合,再使用predict方法对数据进行聚类。
接下来,画出高斯混合聚类的中心和3倍方差组成的椭圆形边界。可以使用以下代码实现:
```
from matplotlib.patches import Ellipse
fig = plt.figure()
ax = fig.add_subplot(111)
colors = ['red', 'blue']
for i in range(2):
ax.scatter(Data_01_Vectorize_DR[labels == i, 0], Data_01_Vectorize_DR[labels == i, 1], c=colors[i])
for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_):
U, s, Vt = np.linalg.svd(covar)
angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
width, height = 2 * np.sqrt(3 * s)
ellip = Ellipse(xy=pos, width=width, height=height, angle=angle, alpha=w)
ax.add_artist(ellip)
ellip.set_facecolor('none')
ellip.set_edgecolor('black')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```
这里使用matplotlib库的Ellipse类,根据高斯混合模型的均值和协方差矩阵画出椭圆形边界。其中,U, s, Vt = np.linalg.svd(covar)是对协方差矩阵进行奇异值分解,np.degrees(np.arctan2(U[1, 0], U[0, 0]))是计算旋转角度,width, height = 2 * np.sqrt(3 * s)是计算椭圆形边界的宽度和高度。
最终,可以得到画出高斯混合聚类的中心和3倍方差组成的椭圆形边界的PC1-PC2散点图。
阅读全文